
INTELLIGENT DRIVESYSTEMS, WORLDWIDE SERVICES

BU 0550 - de

PLC Funktionalität

Zusatzanleitung für NORDAC - Geräte

Inhaltsverzeichnis

1	Einle	itung		7
	1.1	Allgemeines		7
		0	ation	
			historie	
			chtsvermerk	
			ber	
			n Handbuch	
	1.2		nente	
	1.3	-	ntionen	
	1.3		eise	
			nweise	
	1.4	Bestimmungsgema	äße Verwendung	9
2	Sich			
	2.1		fikation des Personals	
		2.1.1 Qualifiziert	tes Personal	10
		2.1.2 Elektrofach	hkraft	10
	2.2	Sicherheitshinweise	e	10
3	PI C			11
•	3.1			
	0.1	3.1.1 Spezifikation	on der PLC	12
		-	au	
		3.1.2.1 Speicher		13
		3.1.2.2 Prozessab	hhild	13
		3.1.2.3 Programm		14
		3.1.2.4 Sollwert Ve		14
			urbeitung über Akku	14
		3.1.3 Funktionsu	umfang	
		3.1.3.1 Motion Co		15
			ches Getriebe mit Fliegender Säge	15
		3.1.3.3 Visualisier		15
		3.1.3.4 Prozessre		16
		3.1.3.5 CANopen		16
	3.2		Programmen	17
	0.2		eichern & Drucken	
			und FB Deklaration	19
		3.2.2.2 Eingabefei		20
			Breakpoint Anzeigefenster	21
		3.2.2.4 PLC Meldu		21
		3.2.3 Programm	n zum Gerät übertragen	
			J	
			ungspunkte (Watchpoints)	23
		3.2.4.2 Haltepunkt		23
		3.2.4.3 Einzelschr		24
		3.2.5 PLC Konfig	gurationguration	25
	3.3	Funktionsblöcke		26
		3.3.1 CANopen.		
		3.3.1.1 Überblick		26
		3.3.1.2 FB_NMT		27
		3.3.1.3 FB_PDOC		28
		3.3.1.4 FB_PDOR		31
		3.3.1.5 FB_PDOS		33
			ches Getriebe mit Fliegender Säge	
		3.3.2.1 Überblick		36
		3.3.2.2 FB_Flying		36
		3.3.2.3 FB_Gearin		38
			ntrol	
		3.3.3.1 MC_Contro		41
		3.3.3.2 MC_Contro		43
		3.3.3.3 MC Home	9	44

Inhaltsverzeichnis

	3.3.3.4	MC_Home (SK 5xxP)	45
	3.3.3.5	MC_MoveAbsolute	47
		MC_MoveAdditive	49
	3.3.3.7	MC_MoveRelative	50
	3.3.3.8	MC_MoveVelocity	51
		MC Power	53
		MC ReadActualPos	55
		MC_ReadParameter	56
		MC ReadStatus	57
		MC Reset	58
		MC_Stop	59
		MC_WriteParameter_16 / MC_WriteParameter_32	60
	3.3.4	Standard	
		CTD Abwärtszähler	61
		CTU Aufwärtszähler	62
		CTUD Auf- und Abwärtszähler	63
		R_TRIG und F_TRIG	65
		RS Flip Flop	66
		SR Flip Flop	67
		TOF Ausschaltverzögerung	68
	3.3.4.8	TON Einschaltverzögerung	69
	3.3.4.9	TP Zeitimpuls	70
	3.3.5	Zugriff auf Speicherbereiche des Frequenzumrichters	71
	3.3.5.1	FB ReadTrace	71
		FB WriteTrace	73
	3.3.6	Visualisierung ParameterBox	
		Überblick Visualisierung	75
		FB DINTToPBOX	76
		FB STRINGTOPBOX	79
	3.3.7	FB_Capture (Erfassen schneller Ereignisse)	
	3.3.8	FB_DinCounter	
	3.3.9	-	
		FB_PIDT1	
		FB_ResetPostion	
	3.3.12	FB_Weigh	90
3.4	Operato	ren	92
	3.4.1	Arithmetische Operatoren	92
	3.4.1.1		92
	3.4.1.2	ADD und ADD(93
		DIV und DIV(94
	3.4.1.4	·	94
	3.4.1.5		95
	3.4.1.6		95
		MOD und MOD(
			96
		MUL und MUL(96
	3.4.1.9		97
		SUB und SUB(97
	3.4.2	Erweiterte mathematische Operatoren	
	3.4.2.1	COS, ACOS, SIN, ASIN, TAN, ATAN	98
	3.4.2.2		99
	3.4.2.3	LN	99
	3.4.2.4	LOG	100
	3.4.2.5	SQRT	100
	3.4.3	Bit Operatoren	101
	3.4.3.1	AND und AND(101
		,	102
	3.4.3.3	•	103
			104
		•	105
	3.4.3.6		106
	3.4.3.7		106
			107
	3.4.3.9		107
	3.4.3.10		108
		'	109
			110
	3.4.4	· · · · · · · · · · · · · · · · · · ·	111
	3.4.4.1	I D	111

		3.4.4.2 LDN	111
		3.4.4.3 ST	112
		3.4.4.4 STN	112
		3.4.5 Vergleichs Operatoren	113
		3.4.5.1 EQ	113
		3.4.5.2 GE	113
		3.4.5.3 GT	114
		3.4.5.4 LE	114
		3.4.5.5 LT	115
		3.4.5.6 NE	115
	3.5	Prozesswerte	116
		3.5.1 Ein- und Ausgänge	116
		3.5.2 PLC Soll- und Istwerte	
		3.5.3 Bus Soll- und Istwerte	128
		3.5.4 ControlBox und ParameterBox	133
		3.5.5 Infoparameter	134
		3.5.6 PLC Fehler	139
		3.5.7 PLC Parameter	140
	3.6	Sprachen	142
		3.6.1 Anweisungsliste (AWL / IL)	142
		3.6.1.1 Allgemein	142
		3.6.2 Strukturierter Text (ST)	146
		3.6.2.1 Allgemein	146
		3.6.2.2 Anweisungen	148
	3.7	Sprünge	152
		3.7.1 JMP	152
		3.7.2 JMPC	152
		3.7.3 JMPCN	152
	3.8	Typkonvertierung	153
		3.8.1 BOOL TO BYTE	
		3.8.2 BYTE TO BOOL	
		3.8.3 BYTE_TO_INT	
		3.8.4 DINT TO INT	
		3.8.5 INT TO BYTE	155
		3.8.6 INT_TO_DINT	155
	3.9	PLC Störmeldungen	156
4	Para	ameter	157
5	Anha	ang	158
	5.1	Service- und Inbetriebnahmehinweise	
	5.2	Dokumente und Software	
	5.3	Abkürzungen	

1 Einleitung

1.1 Allgemeines

1.1.1 Dokumentation

Bezeichnung: BU 0550
Materialnummer: 6075501

Reihe: PLC - Funktionalität für Frequenzumrichter und

Motorstarter der Baureihen

NORDAC PRO (SK 500P ... SK 550P)

(SK 520E ... SK 545E)

NORDAC *Flex* (SK 200E ... SK 235E)

NORDAC Base (SK 180E / SK 190E)

NORDAC *Link* (SK 250E-FDS ... SK 280E-FDS)

NORDAC Link (SK 155E-FDS / SK 175E-FDS)

NORDAC ON/ON+ (SK 300P)

1.1.2 Dokumenthistorie

Ausgabe	Baureihe	Version	Bemerkungen						
Bestellnummer		Software							
BU 0550, September 2011 6075501/3911	SK 540E SK 545E	V 2.0 R0	Erste Ausgabe						
	Weitere Überarbeitungen:								
Eine Übers			Februar 2017, Mai 2019 gaben ist im jeweiligen Dokument zu finden.						
BU 0550 , Januar 2021	SK 500P SK 550P SK 540E SK 545E	V 1.2 R2 V 2.4 R2	 Implementierung der Gerätetypen NORDAC ON/ON+ SK 300P Anpassungen und Korrekturen 						
6075501 / 0321	SK 520E SK 535E SK 200E SK 235E SK 180E / SK 190E SK 250E-FDS SK 280E-FDS SK 155E-FDS / SK 175E-FDS SK 300P	V 3.2 R2 V 2.2 R1 V 1.3 R0 V 1.3 R1 V 1.2 R1 V 1.0 R1							

1.1.3 Urheberrechtsvermerk

Das Dokument ist als Bestandteil des hier beschriebenen Gerätes bzw. der hier beschriebenen Funktionalität jedem Nutzer in geeigneter Form zur Verfügung zu stellen.

Jegliche Bearbeitung oder Veränderung des Dokuments ist verboten.

1.1.4 Herausgeber

Getriebebau NORD GmbH & Co. KG

Getriebebau-Nord-Straße 1 22941 Bargteheide, Germany

http://www.nord.com/

Fon +49 (0) 45 32 / 289-0

Fax +49 (0) 45 32 / 289-2253

1.1.5 Zu diesem Handbuch

Dieses Handbuch soll Ihnen bei der Inbetriebnahme der PLC-Funktionalität eines Frequenzumrichters bzw. Motorstarters der Getriebebau NORD GmbH & Co. KG (kurz NORD) helfen. Es richtet sich an Elektrofachkräfte, die die PLC Programme für das Gerät planen, projektieren, installieren und einrichten (Abschnitt 2.1 "Auswahl und Qualifikation des Personals"). Die in diesem Handbuch enthaltenen Informationen setzen voraus, dass die mit der Arbeit betrauten Elektrofachkräfte mit dem Umgang mit elektronischer Antriebstechnik, insbesondere den Geräten aus dem Hause NORD, vertraut sind.

Dieses Handbuch enthält ausschließlich Informationen und Beschreibungen der PLC-Funktionalität und die für die PLC-Funktionalität relevanten Zusatzinformationen zum Gerät der Getriebebau NORD GmbH & Co. KG.

1.2 Mitgeltende Dokumente

Dieses Handbuch ist nur zusammen mit der Betriebsanleitung des eingesetzten Gerätes gültig. Nur gemeinsam mit diesem Dokument stehen alle für eine sichere Inbetriebnahme der Antriebsaufgabe erforderlichen Informationen zur Verfügung. Eine Liste der Dokumente finden Sie im Abschnitt 5.2 "Dokumente und Software".

Die erforderlichen Dokumente finden Sie unter www.nord.com.

1.3 Darstellungskonventionen

1.3.1 Warnhinweise

Warnhinweise für die Sicherheit der Benutzer und der Busschnittstellen sind wie folgt gekennzeichnet:

GEFAHR

Dieser Warnhinweis warnt vor Personengefährdungen, die zu schweren Verletzungen oder zum Tod führen.

WARNUNG

Dieser Warnhinweis warnt vor Personengefährdungen, die zu schweren Verletzungen oder zum Tod führen können.

VORSICHT

Dieser Warnhinweis warnt vor Personengefährdungen, die zu leichten bis mittelschweren Verletzungen führen können.

ACHTUNG

Dieser Warnhinweis warnt vor Sachschäden.

1.3.2 Andere Hinweise

Ð

Information

Dieser Hinweis zeigt Tipps und wichtige Informationen.

1.4 Bestimmungsgemäße Verwendung

Die PLC-Funktionalität der Getriebebau NORD GmbH & Co. KG ist eine softwaregestützte, funktionale Erweiterung für Frequenzumrichter und Motorstarter aus dem Hause NORD. Sie ist untrennbar mit dem jeweiligen Gerät verbunden und unabhängig von ihm nicht verwendbar. Es gelten somit uneingeschränkt die spezifischen Sicherheitshinweise des jeweiligen Gerätes, die dem betreffenden Handbuch zu entnehmen sind (Abschnitt 5.2 "Dokumente und Software").

Die PLC-Funktionalität dient im Wesentlichen der Lösung komplexer Antriebsaufgaben mit einem oder mehreren Geräten der elektronischen Antriebstechnik, sowie der Vereinfachung antriebsnaher Ansteuerungs- und Überwachungsfunktionen durch ein entsprechend ausgestattetes Gerät.

2 Sicherheit

2.1 Auswahl und Qualifikation des Personals

Die PLC-Funktionalität darf nur von qualifizierten Elektrofachkräften in Betrieb genommen werden. Diese müssen das erforderliche Wissen über die PLC-Funktionalität, über die verwendete elektronische Antriebstechnik sowie die verwendeten Konfigurationshilfsmittel (z.B. NORD CON – Software) und die mit der Antriebsaugabe im Zusammenhang stehenden Peripherie (u. A. die Steuerung) haben.

Die Elektrofachkräfte müssen darüber hinaus mit der Installation, Inbetriebnahme und dem Betrieb von Sensoren und elektronischer Antriebstechnik vertraut sein und alle am Einsatzort geltenden Unfallverhütungsvorschriften, Richtlinien und Gesetze kennen und befolgen.

2.1.1 Qualifiziertes Personal

Zum qualifizierten Personal gehören Personen, die aufgrund ihrer fachlichen Ausbildung und Erfahrung ausreichende Kenntnisse auf einem speziellen Sachgebiet haben und mit den entsprechenden einschlägigen Arbeitsschutz- und Unfallverhütungsvorschriften sowie den allgemein anerkannten Regeln der Technik vertraut sind.

Die Personen müssen vom Betreiber der Anlage berechtigt worden sein, die jeweils erforderlichen Tätigkeiten auszuführen.

2.1.2 Elektrofachkraft

Eine Elektrofachkraft ist eine Person, die aufgrund ihrer fachlichen Ausbildung und Erfahrung ausreichende Kenntnisse besitzt hinsichtlich

- des Einschaltens, Abschaltens, Freischaltens, Erdens und Kennzeichnens von Stromkreisen und Geräten,
- der ordnungsgemäßen Wartung und Anwendung von Schutzeinrichtungen entsprechend festgelegter Sicherheitsstandards,
- · der Notversorgung von Verletzten.

2.2 Sicherheitshinweise

Verwenden Sie die Technologiefunktion **PLC Funktionalität** und das Gerät der Getriebebau NORD GmbH & Co. KG ausschließlich bestimmungsgemäß, Abschnitt 1.4 "Bestimmungsgemäße Verwendung".

Für einen gefahrlosen Einsatz der Technologiefunktion beachten Sie die Vorgaben in diesem Handbuch.

Nehmen Sie das Gerät nur technisch unverändert und nicht ohne erforderliche Abdeckungen in Betrieb. Achten Sie darauf, dass alle Anschlüsse und Kabel in einwandfreiem Zustand sind.

Arbeiten an und mit dem Gerät dürfen nur von qualifiziertem Personal ausgeführt werden, Abschnitt 2.1 "Auswahl und Qualifikation des Personals".

3 PLC

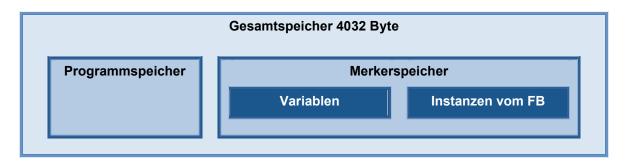
3.1 Allgemeines

NORD Frequenzumrichter der Baureihen SK 180E/SK 190E, SK 2xxE, SK 2xxE-FDS, SK 300P, SK 520E – SK 545E und SK 5xxP sowie die Motorstarter der Baureihe SK 155E-FDS/SK 175E-FDS enthalten eine Logikverarbeitung, welche an die für Speicherprogrammierbare Steuerungen (SPS / PLC) geltende Norm IEC61131-3 angelehnt ist. Die Reaktionsgeschwindigkeit oder Rechenleistung dieser PLC ist geeignet kleinere Aufgaben im Umfeld des Umrichters zu übernehmen. So können Umrichter-Eingänge oder über einen Feldbus ankommende Informationen überwacht, ausgewertet und in entsprechende Sollwerte für den Frequenzumrichter weiterverarbeitet werden. Im Zusammengehen mit anderen NORD Geräten ist auch eine Visualisierung von Anlagenzuständen und Eingabe von speziellen Kundenparametern möglich. Somit ergibt sich im begrenzten Bereich ein Einsparungspotential über das Weglassen einer bisherigen externen PLC Lösung. Als Programmiersprache wird AWL unterstützt. AWL ist eine maschinennahe textbasierende Programmiersprache, deren Umfang und Anwendung in der IEC61131-3 festgelegt ist.

1 Information

Die Programmierung und der Download in das Gerät erfolgen ausschließlich über die NORD Software NORDCON.

3.1.1 Spezifikation der PLC


Funktion	Spezifikation						
Standard	An IEC61131-3 angelehnt						
Sprache	Instruction List (IL), strukturierter Text (ST)						
Task	Ein zyklischer Task, Programmaufruf alle 5ms						
Rechenleistung	Zirka 200 AWL Befehle auf 1	ms					
Programmspeicher	SK 5xxP, SK 520E SK 545E, SK 2xxE, SK 2x0E-FDS, On, On+	SK 190E / SK 180E	SK 155E-FDS / SK 175E-FDS				
	8128 Byte für Merker, Funktionen und das PLC Programm	2032 Byte für Merker, Funktionen und das PLC Programm	2028 Byte für Merker, Funktionen und das PLC Programm				
Max. mögliche Anzahl	ungefähr 2580 Befehle	ungefähr 660 Befehle	ungefähr 660 Befehle				
von Befehlen	Hinweis: Dies ist ein Durchschnittswert, eine starke Verwendung von Merkern, Prozessdaten und Funktionen minimiert die mögliche Zeilenanzahl erheblich, siehe Abschnitt Ressourcen.						
Frei ansprechbare CAN Mailboxen	20 (außer On/On+)						
Unterstützte Geräte	SK 5xxP SK 54xE SK 53xE / SK 52xE ab V3.0 On/On+ SK 2xxE ab V2.0 SK 2x0E-FDS SK 180E / SK 190E SK 155E-FDS / SK 175E- FDS						

3.1.2 PLC Aufbau

3.1.2.1 Speicher

Der Speicher in der PLC wird in Programm- und Merkerspeicher unterteilt. Im Bereich des Merkerspeichers werden neben den Variablen auch die Instanzen von Funktionsblöcken abgelegt. Eine Instanz ist ein Speicherbereich, in dem alle internen Ein- und Ausgabevariablen eines FB abgelegt werden. Jede FB Deklaration benötigt eine eigene Instanz. Die Grenze zwischen Programm- und Merkerspeicher wird dynamisch festgelegt, abhängig von der Größe des Merkerbereiches.

Im Merkerspeicher werden im Bereich Variablen zwei verschiedene Klassen abgelegt:

[VAR]

Speichervariable zum Ablegen von Hilfsinformationen und Zuständen. Variablen dieses Typs werden bei jedem Start der PLC neu initialisiert. Während des zyklischen Ablaufs der PLC bleiben die Speicherinhalte erhalten.

[VAR_ACCESS]

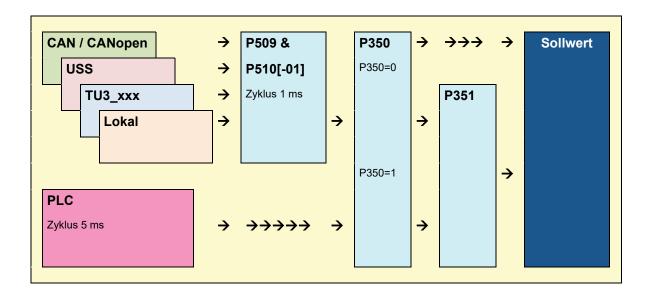
Dient zum Einlesen und Beschreiben von Prozessdaten (Eingänge, Ausgänge, Sollwerte, usw.) des Frequenzumrichters. Diese Werte werden bei jedem PLC Zyklus neu erzeugt

3.1.2.2 Prozessabbild

Das Gerät verfügt über etliche physikalische Größen wie Drehmoment, Drehzahl, Position, Eingänge, Ausgänge, usw. Diese Größen unterteilen sich in Ist- und Sollwerte. Sie können im Prozessabbild der PLC geladen und beeinflusst werden. Die benötigten Prozesswerte müssen in der Variablenliste unter der Klasse VAR_ACCESS definiert werden. Mit jedem PLC Zyklus werden alle in der Variablenliste definierten Prozessdaten des Umrichters neu eingelesen. Am Ende jedes PLC Zyklus werden die beschreibbaren Prozessdaten wieder dem Umrichter übergeben, siehe nachfolgende Abbildung.

Aufgrund dieses Ablaufes ist es wichtig, einen zyklischen Programmablauf zu programmieren. Das Programmieren von Schleifen, um auf bestimmte Ereignisse zu warten (z.B. Pegeländerung an einem Eingang), führt nicht zum gewünschten Ergebnis. Bei Funktionsblöcken, die auf Prozesswerte zugreifen, ist dieses Verhalten anders. Hier werden die Prozesswert mit dem Aufruf des Funktionsblockes gelesen und bei Beendigung des Blockes werden die Prozesswerte sofort geschrieben.

i Information


Werden Motion Blöcke MC_Power, MC_Reset, MC_MoveVelocity, MC_Move, MC_Home oder MC_Stop verwendet, dann dürfen die Prozesswerte "PLC_Control_Word" und "PLC_Set_Val1" bis "PLC_Set_Val5" nicht verwendet werden. Anderenfalls würden die Werte in der Variablenliste immer die Änderung des Funktionsblockes überschreiben.

3.1.2.3 Programm Task

Die Programmausführung in der PLC erfolgt in einer einzigen Task. Die Task wird zyklisch alle 5 ms aufgerufen und ihre max. Bearbeitungsdauer beträgt 3 ms. Kann ein längeres Programm in dieser Zeit nicht abgearbeitet werden, dann wird die Programmausführung unterbrochen und in der nächsten 5 ms Task fortgeführt.

3.1.2.4 Sollwert Verarbeitung

Der Umrichter verfügt über eine Vielzahl von Sollwertquellen, die letztendlich über mehrere Parameter zu einem resultierenden Frequenzumrichter Sollwert miteinander verknüpft werden.

Bei aktivierter PLC (P350=1) erfolgt über die P509 & P510[-01] eine Vorselektion der von außen eingehenden Sollwerte (Hauptsollwerte). Über den P351 wird dann letztlich entschieden, welche Sollwerte von der PLC oder den über P509/P510[-01] eingehenden Werten genommen wird. Auch ein Mix aus beiden ist möglich. Bei den Nebensollwerten (P510[-02]) verändert sich im Zusammenhang mit der PLC Funktion nichts. Alle Nebensollwertquellen und die PLC übergeben ihre Nebensollwerte gleichberechtigt an den Frequenzumrichter.

3.1.2.5 Datenverarbeitung über Akku

Der Akkumulator bildet die zentrale Recheneinheit der PLC. Fast alle AWL-Befehle funktionieren nur im Zusammenhang mit dem Akkumulator. In der NORD PLC existieren gleich drei Akkumulatoren. Dabei handelt es sich um die 32Bit großen Akku1 und Akku2, sowie das AE im Format BOOL. Das AE wird für alle boolschen Lade-, Speicher- und Vergleichsoperationen herangezogen. Wird ein boolscher Wert geladen so wird er im AE dargestellt. Vergleichsoperanden liefern das Ergebnis im AE ab und bedingte Sprünge werden aufgrund des AE ausgelöst. Akku1 und Akku2 werden für alle Operanden im Datenformat BYTE, INT und DINT verwendet. Bei Akku1 handelt es sich um den Hauptakkumulator während Akku2 nur Hilfsfunktionen übernimmt. Alle Lade und Speicheroperanden laufen über Akku1. Alle arithmetischen Operatoren speichern ihr Ergebnis unter Akku1 ab. In Akku2

wird bei jedem Ladebefehl der Inhalt von Akku1 verschoben. Ein nachfolgender Operator kann dann beide Akkumulatoren miteinander verknüpfen oder auswerten und das Ergebnis wieder in Akku1, der im Folgenden auch allgemein als "Akku" bezeichnet wird. speichern.

3.1.3 Funktionsumfang

Die PLC unterstützt eine Vielzahl von Operatoren, Funktionen und Standardfunktionsbausteinen, die in der IEC1131-3 definiert sind. Eine detaillierte Darstellung ist in den nachfolgenden Kapiteln enthalten. Des Weiteren werden Funktionsblöcke erläutert, die zusätzlich unterstützt werden.

3.1.3.1 Motion Control Lib

Die Motion Control Lib ist an die PLCopen Specification "Function blocks for motion control" angelehnt. In ihr sind hauptsächlich Funktionsblöcke zum Verfahren des Antriebs enthalten. Zusätzlich werden auch Funktionsblöcke zum Lesen und Schreiben von Geräteparametern bereitgestellt.

3.1.3.2 Elektronisches Getriebe mit Fliegender Säge

Der Frequenzumrichter verfügt über die Funktionen elektronisches Getriebe (Gleichlauf im Positioniermodus) und Fliegende Säge. Über diese Funktionen kann der Umrichter mit einem anderen Antrieb winkelsynchron mitfahren. Weiterhin ist es über die Zusatzfunktion Fliegende Säge möglich, sich positionsgenau auf einen fahrenden Antrieb zu synchronisieren. Der Betriebsmodus elektronisches Getriebe kann jederzeit gestartet und beendet werden. Damit ist eine Kombination von klassischer Lageregelung mit ihren Verfahrbefehlen und Getriebefunktion möglich. Für die Getriebefunktion wird an der Masterachse zwingend ein NORD Frequenzumrichter mit internem CANBus benötigt.

3.1.3.3 Visualisierung

Mit Hilfe einer ControlBox bzw. einer ParameterBox sind die Visualisierung des Betriebszustandes und die Parametrierung des Frequenzumrichters möglich. Alternativ können auch über die CANopen Master Funktionalität der PLC CAN-Bus Panels zur Anzeige von Informationen verwendet werden.

ControlBox

Die einfachste Variante zur Visualisierung ist die ControlBox. Über zwei Prozesswerte kann auf das 4 stellige Display und den Zustand der Tastatur zugegriffen werden. Damit können sehr schnell einfache HMI Applikationen erstellt werden. Damit die PLC auf die Anzeige zugreifen kann muss der P001 auf "PLC-Controlbox Value" eingestellt werden. Eine weitere Besonderheit ist, dass das Parametermenü nicht mehr über die Pfeiltasten erreicht wird. Stattdessen müssen die "On" und "Enter" Taste zeitgleich betätigt werden.

ParameterBox

Im Visualisierungsmodus kann über die PLC jedes der 80 Zeichen im P-Box Display (4 Zeilen a 20 Zeichen) gesetzt werden. Es ist möglich Zahlen wie auch Texte zu übertragen. Weiterhin können Tastatureingaben auf der P-Box von der PLC erfasst werden. Damit ist eine Realisierung komplexerer HMI Funktionen (Anzeige von Istwerten, Bildwechsel, Übergabe von Sollwerten, usw.) möglich. Der Zugriff auf die P-Box Anzeige erfolgt über Funktionsblöcke in der PLC. Die Visualisierung erfolgt über die Betriebswertanzeige der ParameterBox. Der Inhalt der Betriebswertanzeige wird über den P-Box Parameter P1003 eingestellt. Dieser Parameter befindet sich unter dem Hauptmenüpunkt "Anzeige". P1003 muss auf den Wert "PLC-Anzeige" eingestellt werden. Über die Pfeiltasten Rechts oder Links kann die Betriebswertanzeige danach wieder angewählt werden. Hier wird jetzt das von der PLC kontrollierte Display angezeigt. Diese Einstellung bleibt auch nach einem erneuten Einschalten erhalten.

3.1.3.4 Prozessregler

Der Prozessregler ist ein PID-T1 – Regler mit begrenzter Ausgangsgröße. Mit Hilfe dieses Funktionsbausteines können in der PLC auf einfache Weise komplexe Regelungen aufgebaut werden, über die sich etliche Prozesse, wie z.B. Druckregelungen, deutlich eleganter lösen lassen als mit den häufig verwendeten Zweipunktreglern.

3.1.3.5 CANopen Kommunikation

Neben den standardmäßig vorhandenen Kommunikationskanälen bietet die PLC noch weitere Möglichkeiten zu kommunizieren. Über die CAN Bus Schnittstelle des Frequenzumrichters bzw. über den Systembus kann dieser mit anderen Geräten zusätzliche Kommunikationsbeziehungen aufbauen. Das dabei verwendete Protokoll ist CANopen. Die Kommunikationsbeziehungen sind dabei auf den PDO Datentransfer und NMT Kommandos beschränkt. Die per Standard im Frequenzumrichter vorhandene CANopen Kommunikation über SDO, PDO1, PDO2 und Broadcast bleibt von dieser PLC - Funktion unbeeinträchtigt.

PDO (Prozess Daten Objects)

Über PDO können andere Frequenzumrichter gesteuert und überwacht werden. Es ist aber auch möglich Geräte anderer Anbieter an die PLC anzubinden. Dies können IO-Baugruppen, CANopen Geber, Panels, usw. sein. Damit kann die Anzahl der Ein/Ausgänge des Frequenzumrichters beliebig erweitert werden, auch analoge Ausgänge wären dann möglich.

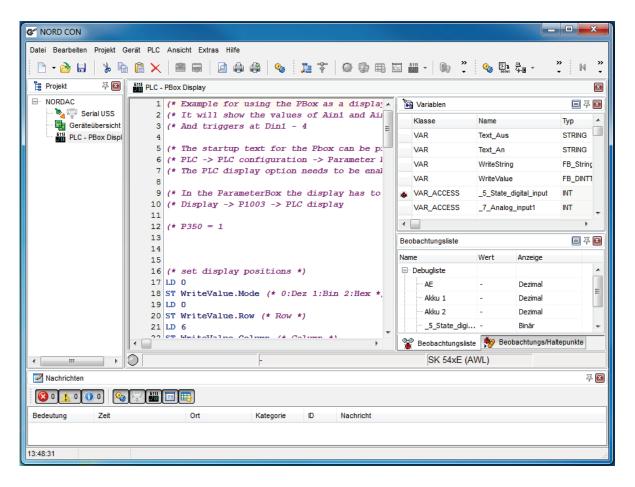
NMT (Network Management Objects)

Alle CANopen Geräte müssen vom Busmaster in den CANopen Bus State "Operational" gebracht werden. Erst in diesem Buszustand ist eine PDO Kommunikation möglich. Wenn sich kein Busmaster in dem CANopen Bus befindet, muss dies durch die PLC erfolgen. Für diesen Zweck gibt es den Funktionsbaustein FB_NMT.

3.2 Erstellen von PLC Programmen

Die Erstellung der PLC Programme erfolgt ausschließlich über das PC-Programm NORDCON. Der PLC Editor wird entweder über den Menüpunkt "Datei/Neu/PLC Programm" oder durch das Symbol geöffnet. Diese Schaltfläche ist nur aktiv, wenn in der Geräteübersicht ein Gerät mit PLC Funktionalität den Fokus hat.

3.2.1 Laden, Speichern & Drucken


Die Funktionen Laden, Speichern und Drucken erfolgen über die entsprechenden Einträge im Hauptmenü oder die Symbolleisten. Beim Öffnen ist es empfehlenswert, im Dialog "Öffnen" den Dateityp auf "PLC Programm" (*.awlx, *.nstx) zu setzen. Damit werden nur noch Dateien, die vom PLC Editor gelesen werden können, angezeigt. Soll das erstellte PLC Programm gespeichert werden, dann muss das Fester vom PLC Editor aktiv sein. Das PLC Programm wird durch Betätigen von "Speichern" oder "Speichern unter" gesichert. Bei der Operation "Speichern unter" kann dies auch am Eintrag des Dateityp (Programm PLC (*.awlx*.nstx)) erkannt werden. Für das Drucken des PLC Programmes muss auch das entsprechende PLC Fenster aktiv sein. Der Ausdruck wird dann über "Datei/Drucken" oder das passende Symbol gestartet.

PLC Programme können zusätzlich auch als gesichertes PLC Programm gespeichert werden. Hierfür muss der Benutzer im Dateiauswahldialog den Dateityp auf "AWL Dateien gesichert" oder "ST Dateien gesichert" einstellen. Anschließend wird das PLC Programm in einer verschlüsselten (*.awls oder *.nsts) und normalen Version (*.awlx, *.nstx) abgespeichert. Das verschlüsselte PLC Programm kann nur noch zum Gerät übertragen werden (siehe).

3.2.2 Editor

Der PLC – Editor ist in vier verschiedene Fenster aufgeteilt.

Die einzelnen Fenster werden in den nachfolgenden Abschnitten näher erläutert.

3.2.2.1 Variablen und FB Deklaration

In diesem Fenster werden alle im Programm benötigten Variablen, Prozesswerte und Funktionsblöcke deklariert.

Variablen

Variablen werden angelegt, indem die Klasse "VAR" eingestellt wird. Der Name für die Variable ist frei wählbar. Im Feld Typ kann zwischen BOOL, BYTE, INT und DINT gewählt werden. Für die Variablen kann eine Startinitialisierung unter Init-Wert eingetragen werden.

Prozesswerte

Diese werden angelegt indem unter Klasse der Eintrag "VAR_ACCESS" selektiert wird. Der Name ist nicht frei wählbar und das Feld Init-Wert ist für diesen Typ gesperrt.

Funktionsbausteine

Unter Klasse wird der Eintrag "VAR" selektiert. Der Name für die jeweilige Instanz des Funktionsbausteins (FB) ist frei wählbar. Der gewünschte FB wird unter Typ selektiert. Ein Init-Wert ist für FB nicht einstellbar.

Alle Menüpunkte, die das Variablenfenster betreffen, werden über das Kontextmenü aufgerufen. Hierüber können Einträge hinzugefügt und gelöscht werden. Sowie Variablen und Prozessvariablen zur Beobachtung (Watchpoint Funktion) oder zum Debuggen (Breakpoint) aktiviert werden.

3.2.2.2 Eingabefenster

Das Eingabefenster dient zur Programmeingabe und auch Darstellung des AWL-Programmes. Es verfügt über folgende Funktionen:

- Syntax Hervorhebung
- Lesezeichen
- · Variablen Deklaration
- Debugging

Syntax Hervorhebung

Werden der Befehl und die ihm zugeordnete Variable vom Editor erkannt, dann wird der Befehl blau und die Variable schwarz dargestellt. Solange dies nicht der Fall ist, erfolgt die Darstellung in dünner, schräger, schwarzer Schrift.

Lesezeichen

Da Programme im Editor durchaus eine beträchtliche Länge erreichen können, ist es möglich über die Funktion Lesezeichen wichtige Stellen im Programm zu markiert und gezielt anzuspringen. Zur Markierung einer Zeile muss sich der Cursor in der betreffenden Zeile befinden. Über den Menüpunkt "Lesezeichen umschalten" (rechte Maustaste Menü) wird die Zeile mit dem gewünschten Lesezeichen markiert. Angesprungen werden die Lesezeichen über den Menüpunkt "Gehe zu Lesezeichen".

Variablen Deklaration

Über das Editor Menü "Variable hinzufügen" (rechte Maustaste) können vom Editor aus neue Variablen deklariert werden.

Debugging

Für die Funktion Debugging werden im Editor die Position der Break- und Watchpoints festgelegt. Dies kann über die Menüpunkte "Haltepunkt umschalten" (Breakpoints) und "Beobachtungspunkt umschalten" (Watchpoints) passieren. Die Position von Breakpoints kann zusätzlich über einen Klick auf der linken Randleise des Editorfensters festgelegt werden. Variablen und Prozesswerte, die während des Debuggings aus dem Frequenzumrichter ausgelesen werden sollen, müssen markiert werden. Dies kann im Editor über die Menüpunkte "Variable debuggen" und "Variable beobachten" erfolgen. Dazu muss die entsprechende Variable markiert sein, bevor der gewünschte Menüpunkt angewählt wird.

3.2.2.3 Watch- & Breakpoint Anzeigefenster

Dieses Fenster verfügt über zwei Tab Reiter die nachfolgend erläutert werden.

Haltepunkte

In diesem Fenster sind alle gesetzten Breakpoint und Watchpoints zu sehen. Sie können über die Checkboxen ein-/ausgeschaltet und über die "Entfernen Taste" gelöscht werden. Über die rechte Maustaste kann ein entsprechendes Menü aufgerufen werden.

Beobachtungsliste

Hier werden alle zur Beobachtung ausgewählten Variablen dargestellt. In der Spalte Wert wird ihr aktueller Inhalt dargestellt. Über die Spalte Anzeige kann das Darstellungsformat ausgewählt werden.

3.2.2.4 PLC Meldungsfenster

In diesem Fenster werden alle Status- und Fehlermeldungen der PLC eingetragen. Für ein korrekt übersetztes Programm erscheint die Meldung "Fehlerfrei übersetzt". Eine Zeile tiefer wird der Ressourcenverbrauch angezeigt. Bei Fehlern im PLC Programm erscheint die Meldung "Fehler X", in X wird die Anzahl der Fehler dargestellt. In den folgenden Zeilen erscheint die konkrete jeweilige Fehlermeldung im Format:

[Zeilennummer]: Fehlerbeschreibung

3.2.3 Programm zum Gerät übertragen

Es gibt mehrere Wege, um ein PLC Programm zum Gerät zu übertragen.

PLC Programm direkt übertragen:

- 1. Gerät im Projektbaum auswählen.
- 2. Kontextmenü öffnen (rechte Maustaste drücken)
- 3. Funktion "PLC Programm zum Gerät übertragen" ausführen
- 4. Datei im Dateiauswahldialog auswählen und "Öffnen" drücken

PLC Programm mit den PLC Editor übertragen (Offline):

- 1. PLC Programm mit der Funktion "Öffnen" (Datei->Öffnen) öffnen
- 2. PLC Editor mit einem Gerät verbinden (PLC->Verbinden)
- 3. PLC Programm übersetzen
- 4. PLC Programm zum Gerät übertragen

PLC Programm mit den PLC Editor übertragen (Online):

- 1. Gerät im Projektbaum markieren
- 2. PLC Editor starten
- 3. PLC Programm öffnen
- 4. PLC Programm in die Online-Ansicht importieren
- 5. PLC Programm übersetzen
- 6. PLC Programm zum Gerät übertragen

a Information

SK 1xxE-FDS - begrenzte Anzahl an Schreibzyklen

In den Geräten SK 155E-FDS / SK 175E-FDS wird als Speichermedium ein Flash eingesetzt. Die Anzahl der Schreibzyklen eines Flashspeichers ist stark begrenzt. Deshalb wird standardmäßig das Programm nur in den RAM geladen. Es kann anschließend gestartet und getestet werden. Soll die PLC anschließend neu gestartet werden, muss das Programm erneut zum Gerät geladen werden, um die PLC Variablen zu initialisieren. Soll das Programm dauerhaft im Gerät gespeichert werden, muss der Benutzer die Aktion "Programm zum Gerät übertragen und speichern" ausführen.

3.2.4 **Debugging**

Da Programme nur in seltenen Fällen auf Anhieb funktionieren bietet die NORD PLC einige Möglichkeiten zur Fehlerfindung. Diese Möglichkeiten lassen sich grob in zwei Punkte unterteilen, auf die jetzt nachfolgend eingegangen wird.

Beobachtungspunkte (Watchpoints) 3.2.4.1

Die einfachste Debugging Variante ist die Watchpoint Funktion. Sie bietet einen schnellen Überblick über das Verhalten einiger Variablen. Dazu wird an beliebiger Stelle im Programm ein Beobachtungspunkt gesetzt. Wenn die PLC diese Programmzeile abarbeitet, werden bis zu 5 Werte gespeichert und in der Beobachtungsliste angezeigt (Fenster "Beobachtungsliste"). Die 5 zu beobachtenden Werte können im Eingabefenster oder Variablenfenster über das Kontextmenü ausgewählt werden. Wurde ein Watchpoint an eine Stelle ohne Programmcode gesetzt, sucht NORDCON die vorherige Codezeile. Wird diese Codezeile im Programmablauf erreicht, wird die Aktualisierung der Werte ausgeführt. Wird ein Watchpoint durch einen Sprung (JMP, IF, Switch Anweisung) übersprungen, werden keine Werte aktualisiert.

a Information

Variablen von Funktionsblöcken können in der aktuellen Version nicht zur Watchliste hinzugefügt werden!

Haltepunkte (Breakpoints) 3.2.4.2

Über Haltepunkte ist es möglich das PLC Programm gezielt an einer gewünschten Programmzeile zu stoppen. Wenn die PLC in einen Haltepunkt hineinläuft werden das AE, Akku1 und Akku2 ausgelesen, sowie alle Variablen, die über den Menüpunkt "Variable debuggen" (Kontextmenü) selektiert wurden. Es können bis zu 5 Breakpoints im PLC Programm gesetzt werden. Gestartet wird diese Funktion

. Das Programm läuft nun solange bis ein Haltepunkt ausgelöst wird. Eine erneute Betätigung der Symbolleiste lässt das Programm wieder frei laufen bis der nächste Haltepunkt

kommt. Soll das Programm wieder frei laufen, so wird das Symbol

3.2.4.3 Einzelschritt (Single Step)

Mit dieser Debugging Methode ist es möglich das PLC Programm Zeile für Zeile in Einzelschritten abzuarbeiten. Mit jedem Einzelschritt werden alle ausgewählten Variablen aus der Geräte-PLC ausgelesen und im Fenster "Beobachtungsliste" angezeigt. Die zu beobachtenden Werte können im Eingabefenster oder Variablenfenster über das rechte Maustastenmenü ausgewählt werden. Voraussetzung für das Debugging in Einzelschritten ist, dass vor dem Start des Debugging

mindestens ein Haltepunkt gesetzt wurde. Durch Betätigung des Symbols wird der Debugging Mode eingeschaltet. Erst wenn das Programm in den ersten Haltepunkt gelaufen ist, kann über das

Symbol in Einzelschritten durch die nachfolgenden Zeilen debuggt werden. Hinter einigen Befehlszeilen verbergen sich mehrere einzelne Befehle. Dadurch kann es passieren das zwei oder mehr Einzelschritte abgearbeitet werden bevor im Eingabefenster die Schrittanzeige weiterspringt. Die aktuelle Position wird über einen kleinen Pfeil am linken PLC Editorfenster angezeigt. Bei Betätigung

des Symbols läuft das Programm bis zum nächsten Haltepunkt weiter. Soll das Programm wieder frei laufen, so wird das Symbol betätigt.

3.2.5 PLC Konfiguration

Über das Symbol wird der PLC Konfigurationsdialog geöffnet. Hier können einige grundsätzliche Einstellungen für die PLC vorgenommen werden, auf die nachfolgend eingegangen wird.

Überwachung der Zykluszeit

Diese Funktion überwacht die max. Bearbeitungszeit für einen PLC Zyklus. Somit können ungewollt programmierte Dauerschleifen im PLC Programm abgefangen werden. Im Falle einer Überschreitung wird im Frequenzumrichter der Fehler E22.4 ausgelöst.

ParameterBox Funktionsbaustein zulassen

Soll im PLC Programm eine Visualisierung über die ParameterBox erfolgen, dann muss diese Option aktiviert sein. Andernfalls erzeugen die entsprechenden Funktionsblöcke beim Start des Frequenzumrichters einen Compiler Fehler.

Ungültige Steuerdaten

Die PLC kann die über die möglichen Bussysteme eingehenden Steuerwörter auswerten. Jedoch kommen die Steuerwörter nur durch, wenn das Bit "PZD gültig" (Bit 10) gesetzt ist. Sollen auch nicht USS Protokoll konforme Steuerwörter von der PLC ausgewertet werden können, dann muss diese Option aktiviert sein. Bit 10 im ersten Wort wird dann nicht mehr abgefragt.

Warmstart nach Fehler

Alle Variablen werden beim Start der PLC immer mit "0" oder ihren Initialisierungswert geladen. Dabei ist es egal ob der Start nach einem Stopp, Programmdownload oder PLC Fehler erfolgt. Über diese Option wird bei einem Warmstart der Inhalt der Variablen nicht verändert. Ein Warmstart erfolgt nach einem PLC Stopp Kommando oder einem PLC Fehler.

Systemzeit beim Haltepunkt nicht anhalten

Während des Debuggings, wenn die PLC im Haltepunkt oder sich im Einzelschrittmode befindet, wird die Systemzeit angehalten. Die Systemzeit bildet die Grundlage für alle Timer in der PLC. Soll die Systemzeit auch während des Debuggings weiterlaufen, dann ist diese Funktion zu aktivieren.

3.3 Funktionsblöcke

Funktionsblöcke sind kleinere Programme, die ihre Zustandswerte in internen Variablen ablegen können. Aus diesem Grund muss für jeden Funktionsblock eine eigene Instanz in der Variablenliste von NORDCON erzeugt werden. Soll z.B. ein Timer parallel 3 Zeiten überwachen, so muss er in der Variablenliste auch dreimal angelegt werden.

1 Information

Erkennen einer Signalflanke

Damit die nachfolgenden Funktionsblöcke eine Flanke am Eingang erkennen können, ist es notwendig, dass der Funktionsaufruf zwei Mal mit unterschiedlichen Zuständen am Eingang durchlaufen wird.

3.3.1 CANopen

Die PLC kann über Funktionsblöcke PDO-Kanälen konfigurieren, überwachen und auf ihnen senden. Über ein PDO können von der PLC bis zu 8 Byte Prozessdaten gesendet oder empfangen werden. Jedes dieser PDO wird über eine eigene Adresse (COB-ID) angesprochen. In der PLC können bis 20 PDO's konfiguriert werden. Zur einfacheren Bedienung wird nicht die COB-ID direkt eingegeben. Stattdessen werden Geräteadresse und die PDO Nummer an den FB übergeben. Die resultierende COB-ID wird auf Basis des Pre-Definded Connection Set (CiA DS301) ermittelt. Dadurch ergeben sich folgende mögliche COB-ID's für die PLC.

Sende	PDO	Überwachte PDO		
PDO	COB-ID	PDO	COB-ID	
PDO1	200h + Geräteadresse	PDO1	180h + Geräteadresse	
PDO2	300h + Geräteadresse	PDO2	280h + Geräteadresse	
PDO3	400h + Geräteadresse	PDO3	380h + Geräteadresse	
PDO4	500h + Geräteadresse	PDO4	480h + Geräteadresse	

NORD Frequenzumrichter benutzen zur Prozessdatenübermittlung PDO1, nur für Soll-/Istwert 4 und 5 wird PDO2 verwendet.

3.3.1.1 Überblick

Funktionsbaustein	Erläuterung
FB_PDOConfig	PDO Konfiguration
FB_PDOSend	PDO senden
FB_PDOReceive	PDO empfangen
FB_NMT	PDO freigeben und sperren

3.3.1.2 FB_NMT

	SK 5xxP	SK 54xE	SK 53xE SK 52xE	On/On+	SK 2xxE	SK 2xxE-FDS	SK 180E SK 190E	SK 155E-FDS SK 175E-FDS
Verfügbarkeit	Χ	Χ	Χ		Χ	X	Χ	X

Nach einem *Power UP* befinden sich alle CAN Teilnehmer im Bus-Zustand Pre-Operational. In diesem Zustand können sie weder PDO empfangen noch senden. Damit die PLC mit anderen Teilnehmern auf dem CAN Bus kommunizieren kann, müssen diese in den Zustand Operational gesetzt werden. Im Regelfall übernimmt dies der Busmaster. Sollte es keinen Busmaster geben, so kann diese Aufgabe vom FB_NMT übernommen werden. Über die Eingänge **PRE**, **OPE** oder **STOP** kann der Zustand aller am Bus angeschlossenen Teilnehmer beeinflusst werden. Die Eingänge werden mit einer positiven Flanke an **EXECUTE** übernommen. Die Funktion muss solange aufgerufen werden, bis der Ausgang **DONE** oder **ERROR** auf 1 gesetzt wurde.

Wenn der Ausgang **ERROR** auf 1 gesetzt wurde, dann liegt entweder keine 24V Versorgung an der RJ45 CAN Buchse des Umrichters an oder der CAN – Treiber des Umrichters ist im Status *Bus off.* Bei einer negativen Flanke an **EXECUTE** werden alle Ausgänge auf 0 zurückgesetzt.

VAR_INPUT			VAR_OUTPUT			
Eingang Erläuterung Typ		Тур	Ausgang	Erläuterung	Тур	
EXECUTE	Ausführen	BOOL	DONE	NMT Befehl wird gesendet	BOOL	
PRE	Setze alle Teilnehmer in den State Pre-Operational	BOOL	ERROR	Fehler im FB	BOOL	
OPE	Setze alle Teilnehmer in den State Operational	BOOL				
STOP	Setze alle Teilnehmer in den State Stopped	BOOL				

3.3.1.3 FB_PDOConfig

	SK 5xxP	SK 54xE	SK 53xE SK 52xE	On/On+	SK 2xxE	SK 2xxE-FDS		SK 155E-FDS SK 175E-FDS
Verfügbarkeit	X	Х	Х		Х	X	Х	Х

Über diesen FB werden die PDO's konfiguriert. Mit einer Instanz dieser Funktion können alle gewünschten PDO's konfiguriert werden. Für jedes PDO muss der FB nur einmal aufgerufen werden. Es können bis zu 20 PDO eingerichtet werden. Jedes PDO hat seine eigene Parametrierung. Die Zuordnung der PDO's in den anderen CANopen FB's erfolgt über die Messagebox Number. Die TARGETID stellt die Geräteadresse dar. Bei NORD Frequenzumrichter wird diese im P515 oder über DIP Schalter eingestellt. Unter PDO wird die gewünscht Messagebox-Nummer eingetragen (siehe Einleitung). LENGTH legt die Sendelänge eines PDO fest. Über DIR wird die Sende/Empfangsrichtung festgelegt. Mit der positiven Flanke am EXECUTE Eingang werden die Daten übernommen. Der DONE Ausgang kann sofort nach Aufruf des FB abgefragt werden. Wenn DONE auf 1 gesetzt ist, dann wurde der PDO-Kanal konfiguriert. Bei ERROR = 1 gab es ein Problem, die genaue Ursache ist in ERRORID abgelegt. Bei einer negativen Flanke an EXECUTE werden alle Ausgänge auf 0 zurückgesetzt.

Sende PDO		Überwachte PDO		
PDO	COB-ID	PDO	COB-ID	
PDO1	200h + Geräteadresse	PDO1	180h + Geräteadresse	
PDO2	300h + Geräteadresse	PDO2	280h + Geräteadresse	
PDO3	400h + Geräteadresse	PDO3	380h + Geräteadresse	
PDO4	500h + Geräteadresse	PDO4	480h + Geräteadresse	
PDO5	180h + Geräteadresse	PDO5	200h + Geräteadresse	
PDO6	280h + Geräteadresse	PDO6	300h + Geräteadresse	
PDO7	380h + Geräteadresse	PDO7	400h + Geräteadresse	
PDO8	480h + Geräteadresse	PDO8	500h + Geräteadresse	

VAR_INPUT			VAR_OUTPUT				
Eingang	Erläuterung	Тур	Ausgang	Erläuterung	Тур		
EXECUTE	Ausführen	BOOL	DONE	PDO konfiguriert	BOOL		
NUMBER	Messagebox Nummer Wertebereich = 0 bis 19	BYTE	ERROR	Fehler im FB	BOOL		
TARGETID	Geräteadresse Wertebereich = 1 bis 127	BYTE	ERRORID	Fehlercode	INT		
PDO	PDO Wertebereich = 1 bis 4	BYTE					
LENGTH	PDO Länge Wertebereich = 1 bis 8	BYTE					
DIR	Senden oder Empfangen Senden = 1 / Empfangen = 0	BOOL					
ERRORID	Erläuterung	•					
0	Kein Fehler						
1800h	Wertebereich Number überschritten						
1801h	Wertebereich TARGETID übers	Wertebereich TARGETID überschritten					
1802h	Wertebereich PDO überschritte	n					
1803h	Wertebereich LENGT überschri	tten					

i Information

Keine doppelte Verwendung der CAN ID

Es dürfen keine CAN-ID parametriert werden, die das Gerät schon benutzt!

Betreffende Empfangsadressen:

• CAN ID = 0x180 + P515[-01] PDO1

• CAN ID = 0x180 + P515[-01]+1 CAN ID für Absolutwertgeber

• CAN ID = 0x280 + P515[-01] PDO2

Betreffende Sendeadressen:

CAN ID = 0x200 + P515[-01] PDO1
 CAN ID = 0x300 + P515[-01] PDO2

Beispiel in ST:

```
(* PDO Konfigurieren *)
PDOConfig(
   Execute := TRUE,
    (* Messagebox 1 konfigurieren *)
   Number := 1,
    (* CAN Knotennummer setzen *)
    TargetID := 50,
    (* PDO wählen (Standard für PDO1 Steuerwort, Sollwert1, Sollwert2, Sollwert3) *)
    PDO := 1,
    (* Länge der Daten festlegen (Standard für PDO1 gleich 8 *)
    LENGTH := 8,
    (* Senden *)
    Dir := 1);
oder
(* PDO Konfigurieren *)
PDOConfig(
    Execute := TRUE,
    (* Messagebox 1 konfigurieren *)
   Number := 2,
    (* CAN Knotennummer setzen *)
    TargetID := 50,
    (* PDO wählen (Standard für PDO2 Sollwert4, Sollwert5 SK540E) *)
    PDO := 2,
    (* Länge der Daten festlegen (Standard für PDO2 gleich 4 *)
    LENGTH := 4,
    (* Senden *)
    Dir := 1);
oder
(* PDO Konfigurieren *)
PDOConfig(
   Execute := TRUE,
    (* Messagebox 2 konfigurieren *)
   Number := 2,
    (* CAN Knotennummer setzen *)
    TargetID := 50,
    (* PDO wählen (Standard für PDO1 Statuswort, Istwert1, Istwert2, Istwert3) *)
    PDO := 1,
    (* Länge der Daten festlegen (Standard für PDO1 gleich 8 *)
    LENGTH := 8,
    (* Empfangen *)
    Dir := 0);
```


3.3.1.4 FB_PDOReceive

	SK 5xxP	SK 54xE	SK 53xE SK 52xE	On/On+	SK 2xxE	SK 2xxE-FDS		SK 155E-FDS SK 175E-FDS
Verfügbarkeit	Х	Х	Х		Х	X	Х	X

Dieser FB überwacht einen vorher konfigurierten PDO Kanal auf eingehende Botschaften. Die Überwachung startet, wenn der **ENABLE** Eingang auf 1 steht. Nach dem Aufruf der Funktion ist der **NEW** Ausgang zu prüfen. Wenn er auf 1 geht, dann ist eine neue Botschaft angekommen. Der **NEW** Ausgang wird mit dem nächsten Aufruf der Funktion gelöscht. In **WORD1** bis **WORD4** stehen die empfangenen Daten. Über **TIME** kann der PDO Kanal auf zyklischen Empfang überwacht werden. Wird in **TIME** ein Wert zwischen 1 und 32767 ms eingetragen, dann muss in dieser Zeitspanne eine Botschaft empfangen werden. Anderenfalls geht der FB in den Fehlerzustand (**ERROR** = 1). Über den Wert 0 kann diese Funktion ausgeschaltet werden. Der Überwachungstimer läuft in 5 ms Schritten. Im Fehlerfall wird **ERROR** auf 1 gesetzt. **DONE** ist in diesem Fall 0. In der **ERRORID** ist dann der entsprechende Fehlercode gültig. Bei einer negativen Flanke an **ENABLE** werden **DONE**, **ERROR** und **ERRORID** zurückgesetzt.

VAR_INPU	т		VAR_OUTPU	т				
Eingang	Erläuterung	Тур	Ausgang	Erläuterung	Тур			
ENABLE	Ausführen	BOOL	NEW	Neues PDO empfangen	BOOL			
NUMBER	Messagebox Nummer Wertebereich = 0 bis 19	BYTE	ERROR	Fehler im FB	BOOL			
TIME	Watchdog-Funktion Wertebereich = 0 bis 32767 0 = ausgeschaltet 1 bis 32767 = Überwachungszeit	INT	ERRORID	Fehlercode	INT			
			WORD1	Empfangsdaten Wort 1	INT			
			WORD2	Empfangsdaten Wort 2	INT			
			WORD3	Empfangsdaten Wort 3	INT			
			WORD4	Empfangsdaten Wort 4	INT			
ERRORID	Erläuterung							
0	Kein Fehler							
1800h	Wertebereich Number überschritten							
1804h	Angewählte Box ist nicht korrekt konfiguriert							
1805h	24 V für Bustreiber Fehlen oder Bustreiber ist im State "Bus off"							
1807h	Empfangs Timeout (Watchdog Funktion)							

i Information

PLC Zykluszeit

Der PLC Zyklus liegt bei 5 ms, d.h. bei einem Aufruf der Funktion im PLC Programm kann nur alle 5 ms eine CAN Botschaft ausgelesen werden. Werden mehrere Botschaften schnell aufeinander gesendet, können Botschaften überschrieben werden.

Beispiel in ST:

```
IF bFirstTime THEN
  (* Geräte in den Status Pre-Operational setzen *)
  NMT(Execute := TRUE, OPE := TRUE);
  IF not NMT.Done THEN
   RETURN;
  END IF;
  (* PDO Konfigurieren *)
 PDOConfig(
   Execute := TRUE,
    (* Messagebox 2 konfigurieren *)
   Number := 2,
    (* CAN Knotennummer setzen *)
   TargetID := 50,
    (* PDO wählen (Standard für PDO1 Statuswort, Istwert1, Istwert2, Istwert3) *)
    PDO := 1,
    (* Länge der Daten festlegen (Standard für PDO1 gleich 8 *)
    Length := 8,
    (* Empfangen *)
    Dir := 0);
END_IF;
(* Status und Istwerte auslesen *)
PDOReceive (Enable := TRUE, Number := 2);
IF PDOReceive.New THEN
 State := PDOReceive.Word1;
  Sollwert1 := PDOReceive.Word2;
  Sollwert2 := PDOReceive.Word3;
  Sollwert3 := PDOReceive.Word4;
END IF
```


3.3.1.5 FB_PDOSend

	SK 5xxP	SK 54xE	SK 53xE SK 52xE	On/On+	SK 2xxE	SK 2xxE-FDS		SK 155E-FDS SK 175E-FDS
Verfügbarkeit	Х	Х	Х		Х	X	Х	X

Mit diesem FB können PDO's auf einem vorher konfigurierten Kanal gesendet werden. Es ist möglich diese einmalig oder zyklisch zu senden. Die zu sendenden Daten werden in WORD1 bis WORD4 eingetragen. Ein Senden der PDO's ist unabhängig vom CANopen State des Frequenzumrichters möglich. Über NUMBER wird der vorher konfigurierte PDO Kanal ausgewählt. In WORD1 bis WORD4 werden die zu sendenden Daten eingetragen. Über CYCLE kann zwischen einmaligen Senden (Einstellung=0) oder zyklischen Senden gewählt werden. Über eine positive Flanke an EXECUTE wird das PDO abgeschickt. Bei DONE = 1 waren alle Eingaben korrekt und das PDO wird gesendet. Bei ERROR = 1 gab es ein Problem. Die genaue Ursache ist in ERRORID abgelegt. Alle Ausgänge werden mit negativer Flanke an EXECUTE zurückgesetzt. Die Zeitbasis der PLC ist 5ms, dies gilt auch für den Eingang CYCLE. Es sind nur Sendezyklen mit einem Vielfachen von 5ms realisierbar.

VAR_INPU	Т		VAR_OUTPU	т				
Eingang	Erläuterung	Тур	Ausgang	Erläuterung	Тур			
EXECUTE	Ausführen	BOOL	DONE	PDO gesendet = 1	BOOL			
NUMBER	Messagebox Nummer Wertebereich = 0 bis 19		ERROR	Fehler im FB	BOOL			
CYCLE	Sendezyklus Wertebereich = 0 bis 255 0 = ausgeschaltet 1 bis 255 = Sendezyklus in ms	ВҮТЕ	ERRORID	Fehlercode	INT			
WORD1	Sendedaten Wort 1	INT						
WORD2	Sendedaten Wort 2	INT						
WORD3	Sendedaten Wort 3	INT						
WORD4	Sendedaten Wort 4	INT						
ERRORID	Erläuterung							
0	Kein Fehler							
1800h	Wertebereich Number überschritten							
1804h	Angewählte Box ist nicht korrekt konfiguriert							
1805h	24 V für Bustreiber Fehlen oder B	ustreibe	r ist im State "E	Bus off"				

Wenn **DONE** auf 1 geht, dann wurde die zu sendende Botschaft vom CAN Modul übernommen, aber noch nicht gesendet. Das eigentliche Senden läuft parallel im Hintergrund. Sollen jetzt über einen FB mehrere Botschaften direkt hintereinander gesendet werden, dann kann es zu passieren, dass bei dem neuen Aufruf die vorherige Botschaft noch nicht gesendet wurde. Dies kann daran erkannt werden, dass weder das **DONE** noch das **ERROR** Signal nach den **CAL** Aufruf auf 1 gesetzt wurde. Der **CAL** Aufruf kann jetzt einfach so oft wiederholt werden, bis eines der beiden Signale auf 1 geht. Sollen über einen einzigen FB mehrere verschiedene CAN-ID's beschrieben werden, so ist dies über

eine Neukonfiguration des FB's möglich. Diese darf jedoch nicht im selben PLC Zyklus wie das Senden erfolgen. Da sonst die Gefahr besteht, dass die zu sendende Botschaft bei der Konfiguration über den FB_PDOConfig gelöscht wird.

Beispiel in ST:

```
IF bFirstTime THEN
  (* Geräte in den Status Pre-Operational setzen *)
  NMT (Execute := TRUE, OPE := TRUE);
  IF not NMT.Done THEN
   RETURN;
  END IF;
  (* Configure PDO*)
  PDOConfig(
    Execute := TRUE,
    (*Messagebox 1 konfigurieren*)
    Number := 1,
    (* CAN Knotennummer setzen *)
    TargetID := 50,
    (* PDO wählen (Standard für PDO1 Statuswort, Istwert1, Istwert2, Istwert3) *)
    PDO := 1,
    (*Länge der Daten festlegen (Standard für PDO1 gleich 8 *)
    LENGTH := 8,
    (* Senden *)
    Dir := 1);
  IF not PDOConfig.Done THEN
    RETURN;
  END_IF;
  (* Transmit PDO - Steuerwort Gerät in den Status "Einschalt bereit" versetzen *)
  PDOSend(Execute := TRUE, Number := 1, Word1 := 1150, Word2 := 0, Word3 := 0, Word4 := 0);
  IF NOT PDOSend.Done THEN
   RETURN;
  END IF;
  PDOSend(Execute := FALSE);
  bFirstTime := FALSE;
END IF;
CASE State OF
  0:
      (* Ist der digitale Eingang 1 gesetzt? *)
      IF 5 State digital input.0 THEN
        (*Transmit PDO - Steuerwort Gerät in den Status "Einschalt bereit" versetzen *)
        PDOSend(Execute := TRUE, Number := 1, Word1 := 1150, Word2 := 0, Word3 := 0,
          Word4 := 0);
        State := 10;
        RETURN;
      END IF;
      (*Ist der digitale Eingang 2 gesetzt? *)
      IF _5_State_digital_input.1 THEN
  (* Transmit PDO - Gerät mit 50% Max. Frequenz freigeben *)
        PDOSend(Execute := TRUE, Number := 1, Word1 := 1151, Word2 := 16#2000, Word3 := 0,
          Word4 := 0);
        State := 10;
        RETURN;
      END_IF;
  10:
      PDOSend;
      IF PDOSend.Done THEN
        PDOSend(Execute := FALSE);
        State := 0;
      END IF;
END CASE;
```


3.3.2 Elektronisches Getriebe mit Fliegender Säge

Für das elektronische Getriebe ("winkelsynchroner Gleichlauf") und die Unterfunktion Fliegende Säge gibt es zwei Funktionsblöcke, die eine Steuerung dieser Funktionen erlauben. Weiterhin müssen für einen korrekten Ablauf der beiden Funktionsblöcke im Master- und Slave- Frequenzumrichter diverse Parameter eingestellt werden. Exemplarisch ist dies in der nachfolgenden Tabelle am Beispiel eines SK 540E aufgeführt.

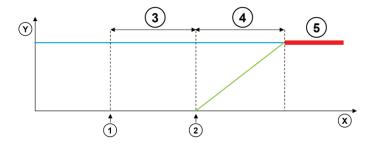
Master FU			Slave FU				
Parameter	arameter Einstellung Bedeutung		Parameter	Einstellung	Bedeutung		
P502[-01]	20	Sollfreq. nach Freq.Rampe	P509	10 *	CANopen Broadcast *		
P502[-02]	15	Istpos in Inc. High – Word	P510[-01]	10	CANopen Broadcast		
P502[-03]	10	Istpos in Inc. Low – Word	P510[-02]	10	CANopen Broadcast		
P503	3	CANopen	P505	0	0,0 Hz		
P505	505 0 0,0 Hz		P515[-02]	P515[-03] _{Master}	Broadcast Slave Adresse		
P514	5	250 kBaud (min. 100 kBaud)	P546[-01]	4	Frequenzaddition		
P515[-03]	P515[- 02]Slave	Broadcast Master Adresse	P546[-02]	24	Sollpos. Inc. High – Word		
			P546[-03]	23	Sollpos. Inc. Low – Word		
			P600	1,2	Lageregelung an		
			Nur für den FB_Gearing				
			P553[-01]	21	Pos. Sollpos Low Word		
			P553[-02]	22	Pos. Sollpos High Word		

^{* (}P509) muss nicht zwingend auf {10} "CANopen Broadcast" stehen. Dann jedoch ist am Master (P502 [-01]) auf die Einstellung {21} "Istfrequenz ohne Schlupf" zu stellen.

i Information

Istlage - Übertragungsformat

Die Istlage des Masters muss zwingend im Format "Inkremente" (Inc) übergeben werden.


3.3.2.1 Überblick

Funktionsbaustein	Erläuterung
FB_Gearing	FB für die einfache Getriebefunktion
FB_FlyingSaw	FB für Getriebefunktion mit fliegender Säge

3.3.2.2 FB_FlyingSaw

	SK 5xxP	SK 54xE	SK 53xE SK 52xE	On/On+	SK 2xxE	SK 2xxE-FDS	SK 180E SK 190E	SK 155E-FDS SK 175E-FDS
Verfügbarkeit	Х	Х	Χ	On+	Х	X	Χ	

Die Funktion Fliegende Säge stellt eine Erweiterung zur Getriebefunktion dar. Mit Hilfe dieser Funktion ist es möglich auf einen fahrenden Antrieb positionsgenau zu synchronisieren. Die Synchronisierung erfolgt im Gegensatz zu FB_Gearing relativ, d.h. die Slave Achse verfährt synchron zu der Position des Masters, die beim Start der "Fliegenden Säge" anlag. Der Vorgang der Synchronisierung ist im nachfolgenden Bild dargestellt.

1	Position des Initiators						
2	Startpunkt des Slave						
3	Entfernung des Initiators zur Startposition des Slave-Frequenzumrichters						
4	Beschleunigung						
5	Gleichlauf beider Antriebe						
X	Position						
Υ	Geschwindigkeit						

Wird die Funktion gestartet, dann beschleunigt der Slave Frequenzumrichter auf die Geschwindigkeit der Masterachse. Die Beschleunigungsrampe wird über den Weg **ACCELERATION** festgelegt. Bei niedrigen Geschwindigkeit ist die Rampe so flacher und bei hohen Master Geschwindigkeiten ergibt sich eine steiler Rampe für den Slave Frequenzumrichter. Der Beschleunigungsweg wird in Umdrehungen (1000 = 1,000 rev) angegeben, wenn P553 als Sollposition angegeben ist. Wird für P553 Sollposition INC verwendet, dann wird der Beschleunigungsweg in Inkrementen angegeben.

Wird der Initiator mit der in **ACCELERATION** gespeicherten Entfernung vor die Position des Slave Antriebes gesetzt, dann wird der Slave präzise mit der auslösenden Position auf dem Masterantrieb synchronisiert.

Der FB muss über den **ENABLE** Eingang eingeschaltet werden. Der Start der Funktion kann entweder über einen digitalen Eingang (P420[-xx]=64, *Start Fliegende Säge*) oder **EXECUTE** erfolgen. Der Frequenzumrichter beschleunigt dann auf die Geschwindigkeit der Masterachse. Bei Erreichen der Synchronität zur Masterachse wird der **DONE** Ausgang auf 1 geschaltet.

Über den **STOP** Eingang oder die digitale Eingangsfunktion P420[-xx] = 77, *Fliegende Säge anhalten*, erfolgt ein Ausschalten der Getriebefunktion, der Frequenzumrichter bremst auf 0Hz und bleibt stehen. Über den **HOME** Eingang wird der Umrichter veranlasst auf die absolute Position 0 zu fahren. Nach Beendigung des **HOME** oder **STOP** Befehls ist der jeweils zugeordnete Ausgang aktiv. Über eine erneute Betätigung von **EXECUTE** oder den digitalen Eingang kann die Getriebefunktion wieder gestartet werden. Mit der digitalen Eingangsfunktion (P420[-xx] = 63, *Gleichlauf ausschalten*) kann die Getriebefunktion angehalten, und anschließend auf die absolute Position 0 gefahren werden.

Wird die Funktion durch die MC_Stop Funktion unterbrochen, dann wird **ABORT** auf 1 gesetzt. Im Fehlerfall wird **ERROR** auf 1 und in **ERRORID** der Errorcode gesetzt. Diese drei Ausgänge werden zurückgesetzt wenn **ENABLE** auf 0 geschaltet wird.

VAR_INPUT			VAR_OUTPUT			
Eingang	Erläuterung	Тур	Ausgang	Ausgang Erläuterung		
ENABLE	Freigabe	BOOL	VALID	Vorgegebene Sollfrequenz erreicht	BOOL	
EXECUTE	Start der Synchronisierung	BOOL	DONEHOME	Home Fahrt beendet		
STOP	Stop der Synchronisierung	BOOL	DONESTOP	Stop Kommando ausgeführt		
HOME	Verfährt auf Position 0	BOOL	ABORT	Befehl abgebrochen	BOOL	
ACCELERATION	Beschleunigungsweg (1rev. = 1.000)	DINT	ERROR	Fehler im FB	BOOL	
			ERRORID	Fehlercode	INT	
ERRORID	Erläuterung					
0	Kein Fehler					
1000h	FU ist nicht freigegeben					
1200h	Lageregelung ist nicht al	ktiviert				

3.3.2.3 FB Gearing

	SK 5xxP	SK 54xE	SK 53xE SK 52xE	On/On+	SK 2xxE	SK 2xxE-FDS		SK 155E-FDS SK 175E-FDS
Verfügbarkeit	Х	Χ	Χ	On+	Χ	X	Χ	

Über den Funktionsbaustein FB_Gearing kann die Position und die Drehzahl des Frequenzumrichters auf die eines Masterumrichters synchronisiert werden. Der Slave, der diese Funktion verwendet, folgt immer den Bewegungen des Masterumrichters.

Die Synchronisierung erfolgt absolut, d.h. Slave- und Masterposition sind immer gleich.

i Information

Wird der Slave mit einer anderen Position als der Master in den Getriebemode geschaltet, dann verfährt der Slave mit max. Frequenz zur Masterposition.

Wird ein Übersetzungsverhältnis angegeben, ergibt sich nach dem Wiedereinschalten auch eine neue Position.

Der Positionswert, auf den synchronisiert wird, sowie die Drehzahl, müssen über den Broadcast Kanal übertragen werden. Über den Eingang **ENABLE** wird die Funktion aktiviert, dabei muss die Lagereglung aktiv und die Endstufe freigegeben sein. Die Endstufe kann z.B. mit der Funktion MC_Power freigegeben werden. Wird **ENABLE** auf 0 gesetzt, dann bremst der Frequenzumrichter auf 0Hz und bleibt stehen. Der Umrichter befindet sich jetzt wieder im Mode Lageregelung. Wird der MC_Stop aktiviert, dann verlässt der Frequenzumrichter den Getriebemode und der **ABORT** Ausgang geht auf 1. Bei Fehlern im FB geht **ERROR** auf 1 und die Fehlerursache steht in **ERRORID**. Über ein setzten von **ENABLE** auf 0 kann **ERROR, ERRORID** und **ABORT** wieder zurückgesetzt werden.

VAR_INPUT			VAR_OUTPUT				
Eingang	Erläuterung	Тур	Ausgang	Erläuterung	Тур		
ENABLE	Gleichlauf aktiv	BOOL	VALID	Getriebefunktion ist aktiv	BOOL		
RELATIVE	Relative Mode (ab V2.1)	BOOL	ABORT	Befehl abgebrochen	BOOL		
			ERROR	Fehler im FB	BOOL		
			ERRORID	Fehlercode	INT		
ERRORID	Erläuterung						
0	Kein Fehler						
1000h	FU ist nicht freigegeben						
1200h	Lageregelung ist nicht aktivier	t					
1201h	Der PLC Sollwert Position High ist nicht parametriert						
1202h	Der PLC Sollwert Position Lov	v ist nicht	parametriert		_		

3.3.3 Motion Control

Die Motion Control Lib ist an die PLCopen Specification "Function blocks for motion control" angelehnt. Sie enthält Funktionsblöcke zum Steuern und Verfahren eines Frequenzumrichters und bietet Zugriff auf seine Parameter. Damit die Motion Blöcke funktionieren, müssen einige Einstellungen in den Parametern des Gerätes vorgenommen werden.

Funktionsblock	Benötigte Einstellungen
MC_MoveVelocity	 P350 = PLC aktiv P351 = Hauptsollwert kommt von der PLC P553 [-xx] = Sollfrequenz P600 = Lageregelung (Positioniermode) ist ausgeschaltet
MC_MoveAbsolute	• P350 = PLC aktiv
MC_MoveRelative	 P351 = Hauptsollwert kommt von der PLC P600 = Lageregelung (Positioniermode) ist eingeschaltet
MC_MoveAdditive	In P553 [-xx] (PLC_Sollwerte) muss die Sollposition High Word parametriert sei In P553 [-xx] (PLC_Sollwerte) muss die Sollposition I au Word parametriert sei
MC_Home	 In P553 [-xx] (PLC_Sollwerte) muss die Sollposition Low Word parametriert sei In P553 [-xx] (PLC_Sollwerte) muss die Sollfrequenz parametriert sei
MC_Power	• P350 = PLC aktiv
MC_Reset	P351 = Steuerwert kommt von der PLC
MC_Stop	

i Information

Die PLC_Sollwert 1 bis 5 und das PLC Steuerwort lassen sich auch über Prozessvariablen beschreiben. Sollen jedoch die Motion Control FB's verwendet werden, dürfen keine entsprechenden Prozessvariablen in der Variablentabelle deklariert sein, da sonst die Ausgaben der Motion Control FB's überschrieben werden.

1 Information

Erkennen einer Signalflanke

Damit die nachfolgenden Funktionsblöcke eine Flanke am Eingang erkennen können, ist es notwendig, dass der Funktionsaufruf zwei Mal mit unterschiedlichen Zuständen am Eingang durchlaufen wird.

PLC Funktionalität – Zusatzanleitung für NORDAC - Geräte

Funktionsblock	Erläuterung
MC_ReadParameter	Lesezugriff auf die Parameter des Gerätes
MC_WriteParameter	Schreibzugriff auf die Parameter des Gerätes
MC_MoveVelocity	Verfahrbefehl im Drehzahlmode
MC_MoveAbsolute	Verfahrbefehl mit absoluter Positionsangabe
MC_MoveRelative	Verfahrbefehl mit relativer Positionsangabe
MC_MoveAdditive	Verfahrbefehl mit additiver Positionsangabe
MC_Home	Startet eine Homefahrt
MC_Power	Ein-/Ausschalten der Motorspannung
MC_ReadStatus	Gerätestatus
MC_ReadActualPos	Liest die aktuelle Position aus
MC_Reset	Fehlerreset im Gerät
MC_Stop	Stoppt alle aktiven Verfahrbefehle

3.3.3.1 MC_Control

	SK 5xxP	SK 54xE	SK 53xE SK 52xE	On/On+	SK 2xxE	SK 2xxE-FDS		SK 155E-FDS SK 175E-FDS
Verfügbarkeit	Χ	Χ	Χ	Χ	Χ	X	Χ	

Dieser FB dient zum Steuern des FU und bildet die Möglichkeiten des FU Steuerwortes etwas detaillierter nach wie der MC_Power. Über die Eingänge **ENABLE (ENABLE_RIGHT)**, **ENABLE_LEFT, DISABLEVOLTAGE** und **QUICKSTOP** wird der FU gesteuert, siehe nachfolgende Tabelle.

Baustein E	ingänge			Verhalten Frequenzumrichter
ENABLE (RIGHT)	ENABLE_ LEFT	QUICKSTOP	DISABLE VOLTAGE	
High	Low	Low	Low	Der Frequenzumrichter wird eingeschaltet (Freigabe rechts).
X	High	Low	Low	Der Frequenzumrichter wird eingeschaltet (Freigabe links).
Low	Low	Low	Low	Der Frequenzumrichter bremst auf 0Hz (P103) und schaltet dann den Motor spannungsfrei.
X	X	Х	High	Der Frequenzumrichter wird sofort spannungsfrei geschaltet, der Motor dreht ungebremst aus.
X	Х	High	Low	Der Frequenzumrichter fährt einen Schnellstop (P426) und schaltet dann den Motor spannungsfrei

Über den Eingang **PARASET** kann der aktive Parametersatz eingestellt werden.

Wenn der Ausgang **STATUS** = 1 ist, dann ist der FU eingeschaltet und der Motor wird bestromt.

VAR_INPUT			VAR_OUTPU	т		
Eingang	Erläuterung	Erläuterung Typ		Erläuterung	Тур	
ENABLE	Freigabe	BOOL	STATUS	Motor wird bestromt	BOOL	
DISABLEVOLTA GE	Spannungsfrei schalten	BOOL	ERROR	Fehler im FB	BOOL	
QUICKSTOP	Schnellstop	BOOL	ERRORID	Fehlercode	INT	
PARASET	Aktiver Parametersatz Wertebereich: 0 - 3	BYTE				
ENABLE_RIGHT	Freigabe rechts (wie ENABLE) (SK5xxP)	BOOL				
ENABLE_LEFT	Freigabe links (SK5xxP)	BOOL				
ERRORID	Erläuterung					
0	Kein Fehler					
1001h	Stop Funktion ist aktiv					
1300h	Der FU befindet sich in ei werden kann	inem Zus	tand, in dem di	e ausgewählte Funktion nicht ausgefü	ührt	

Beispiel in ST:

```
(* Gerät freigeben mit Dig3*)
Control.Enable := _5_State_digital_input.2;
(* Parametersätze werden über Dig1 und Dig2 festgelegt. *)
Control.ParaSet := INT TO BYTE( 5 State digital input and 2#11);
Control;
(* Ist Gerät freigegeben? *)
if Control.Status then
  (* Soll eine andere Position angefahren werden? *)
 if SaveBit3 <> _5_State_digital_input.3 then
   SaveBit3 := _5_State_digital_input.3;
   if SaveBit3 then
     Move.Position := 500000;
     Move.Position := 0;
   end_if;
   Move(Execute := False);
  end_if;
end if;
(* Position anfahren wenn das Gerät freigegeben ist. *)
Move(Execute := Control.Status);
```


3.3.3.2 MC_Control_MS

	SK 5xxP	SK 54xE	SK 53xE SK 52xE	On/On+	SK 2xxE	SK 2xxE-FDS	SK 155E-FDS SK 175E-FDS
Verfügbarkeit							X

Dieser FB dient zum Steuern des Starters (MS).

Baustein Eingä	inge			Verhalten Frequenzumrichter
ENABLE_RIG HT	ENABLE_LEFT	ENABLE_LEFT QUICKSTOP DISABLEVOLTAGE		
High	Low	Low	Low	MS wird eingeschaltet, rechtsdrehend
Low	High	Low	Low	MS wird eingeschaltet, linksdrehend
High	High	Low	Low	MS wird ausgeschaltet
Low	Low	Low	Low	MS bremst auf 0 Hz (P103) und schaltet dann den Motor spannungsfrei
Х	х	Х	High	MS wird sofort spannungsfrei geschaltet, der Motor dreht ungebremst aus
Х	Х	High	Low	MS fährt einen Schnellstopp (P426) und schaltet dann den Motor spannungsfrei

⁽X = der Pegel am Eingang ist unwichtig)

Wenn der Ausgang **STATUS** = 1 ist, dann ist der MS eingeschaltet und der Motor wird bestromt. Wird **OPENBRAKE** auf 1 gesetzt, dann wird die Bremse geöffnet.

VAR_INPUT			VAR_OUTPUT			
Eingang	Erläuterung Typ		Ausgang	Erläuterung	Тур	
ENABLE_RIGHT	Freigabe rechts	BOOL	STATUS	Motor wird bestromt	BOOL	
ENABLE_LEFT	Freigabe links	BOOL	ERROR	Fehler im FB	BOOL	
DISABLEVOLTA GE	Spannungsfrei schalten	BOOL	ERRORID	Fehlercode	INT	
QUICKSTOP	Schnellstopp	BOOL				
OPENBRAKE	Bremse öffnen	BOOL				
ERRORID	Erläuterung					
0	Kein Fehler					
1001h	Stopp Funktion ist aktiv					
1300h	MS befindet sich in einen	n unerwa	rteten State			

3.3.3.3 MC_Home

	SK 5xxP	SK 54xE	SK 53xE SK 52xE	On/On+	SK 2xxE	SK 2xxE-FDS		SK 155E-FDS SK 175E-FDS
Verfügbarkeit		Χ	X		Χ	X	Χ	Х

Veranlasst den Frequenzumrichter eine Referenzpunktfahrt zu starten, sofern **EXECUTE** von 0 auf 1 wechselt (Flanke). Der Frequenzumrichter verfährt mit der in **VELOCITY** eingetragenen Sollfrequenz. Wenn der Eingang mit dem Positionsreferenzsignal (P420[-xx] = Referenzpunkt) aktiv wird, dann erfolgt eine Drehrichtungsumkehr. Bei der negativen Flanke des Positionsreferenzsignals wird der in **POSITION** stehende Wert übernommen. Anschließend bremst der Frequenzumrichter auf 0Hz ab, das Signal **DONE** geht auf 1. Während der gesamten **HOME** Fahrt ist der **BUSY** Ausgang aktiv. Wird der Eingang **MODE** auf **True** gesetzt, übernimmt der Antrieb beim Überfahren des Referenzpunktschalters während der Referenzpunktfahrt (positive Flanke → negative Flanke) den Mittelwert beider Positionen und setzt diesen als Referenzpunkt. Der Antrieb reversiert und bleibt auf dem so ermittelten Referenzpunkt stehen. Der Eingang **POSITION** kann nicht verwendet werden.

Sollte der Vorgang abgebrochen werden (z.B. durch einen anderen MC Funktionsbaustein), wird **COMMANDABORTED** gesetzt.

Im Fehlerfall wird **ERROR** auf 1 gesetzt. **DONE** ist in diesem Fall 0. In der **ERRORID** ist dann der entsprechende Fehlercode gültig.

VAR_INPUT			VAR_OUTPUT			
Eingang	Erläuterung	Тур	Ausgang	Erläuterung		
EXECUTE	Freigabe	BOOL	DONE	Vorgegebene Sollposition erreicht	BOOL	
POSITION	Sollposition	DINT	COMMAND- ABORTED	Befehl abgebrochen	BOOL	
VELOCITY	Sollfrequenz	INT	ERROR	Fehler im FB	BOOL	
MODE (ab V2.1)	siehe unten	BOOL	ERRORID	Fehlercode	INT	
			BUSY	Home Fahrt aktiv	BOOL	
ERRORID	Erläuterung					
0	Kein Fehler					
1000h	FU ist nicht freigegeben					
1200h	Lageregelung ist nicht ak	tiviert				
1201h	In den PLC Sollwerten is	t die High	Position nicht	eingetragen (P553)		
1202h	In den PLC Sollwerten is	t die Low	Position nicht e	eingetragen (P553)		
1D00h	Absolutwertgeber werder	n nicht un	terstützt			

3.3.3.4 MC_Home (SK 5xxP)

	SK 5xxP	SK 54xE	SK 53xE SK 52xE	On/On+	SK 2xxE	SK 2xxE-FDS	SK 180E SK 190E	SK 155E-FDS SK 175E-FDS
Verfügbarkeit	Х			On+				

Veranlasst den Frequenzumrichter eine Referenzpunktfahrt zu starten, sofern **EXECUTE** von 0 auf 1 wechselt (Flanke). Der Frequenzumrichter verfährt mit der in **VELOCITY** eingetragenen Sollfrequenz. Wenn der Eingang mit dem Positionsreferenzsignal (P420[-xx] = Referenzpunkt) aktiv wird, dann erfolgt eine Drehrichtungsumkehr. Bei der negativen Flanke des Positionsreferenzsignals wird der in **POSITION** stehende Wert übernommen. Anschließend bremst der Frequenzumrichter auf 0Hz ab, das Signal **DONE** geht auf 1. Während der gesamten **HOME** Fahrt ist der **BUSY** Ausgang aktiv.

Sollte der Vorgang abgebrochen werden (z.B. durch einen anderen MC Funktionsbaustein), wird **COMMANDABORTED** gesetzt.

Im Fehlerfall wird **ERROR** auf 1 gesetzt. **DONE** ist in diesem Fall 0. In der **ERRORID** ist dann der entsprechende Fehlercode gültig.

VAR_INPUT			VAR_OUTPUT				
Eingang	Erläuterung	Тур	Ausgang	ng Erläuterung			
EXECUTE	Freigabe	BOOL	DONE	Vorgegebene Sollposition erreicht	BOOL		
POSITION	Sollposition	DINT	COMMAND- ABORTED	Befehl abgebrochen	BOOL		
VELOCITY	Sollfrequenz	INT	ERROR	Fehler im FB	BOOL		
MODE	siehe unten	BYTE	ERRORID	Fehlercode	INT		
			BUSY	Home Fahrt aktiv	BOOL		
ERRORID	Erläuterung						
0	Kein Fehler						
1000h	FU ist nicht freigegeben						
1200h	Lageregelung ist nicht ak	ctiviert					
1201h	In den PLC Sollwerten is	t die High	Position nicht	eingetragen (P553)			
1202h	In den PLC Sollwerten is	t die Low	Position nicht e	eingetragen (P553)			
1D00h	Absolutwertgeber werder	n nicht un	terstützt				
1D01h	Wertebereich von Eingar	ng "Mode	" über- bzw. unt	terschritten (P623)			

Mode

Wert	Erläuterung
114	Referenzpunktmethode siehe P623
15	Wird der Referenzpunktschalter erreicht, reversiert der Antrieb. Beim Verlassen des Referenzpunktschalters (negative Flanke) wird dies als Referenzpunkt übernommen. Der Referenzpunkt liegt somit typischer Weise auf der Seite des Referenzpunktschalters, auf der die Referenzpunktfahrt begonnen wurde. Hinweis: Wird der Referenzpunktschalter "überfahren" (zu schmaler Schalter, zu hohe Geschwindigkeit), wird ebenfalls beim Verlassen des Referenzpunktschalters (negative Flanke) dies als Referenzpunkt übernommen. Der Referenzpunkt liegt somit nicht auf der Seite des Referenzpunktschalters, auf der die Referenzpunktfahrt begonnen wurde. (P623 = [15] Nord Methode 1)
16	Wie 15, jedoch führt ein Überfahren des Referenzpunktschalters nicht zur Übernahme als Referenzpunkt. Erst nach abgeschlossenem Reversieren führt eine negative Flanke zur Übernahme als Referenzpunkt. Der Referenzpunkt liegt somit sicher auf der Seite des Referenzpunktschalters, auf der die Referenzpunktfahrt begonnen wurde. (P623 = [16] Nord Methode 2)
17	Beim Überfahren des Referenzpunktschalters während der Referenzpunktfahrt (positive Flanke → negative Flanke) übernimmt der Antrieb den Mittelwert beider Positionen und setzt diesen als Referenzpunkt. Der Antrieb reversiert und bleibt auf dem so ermittelten Referenzpunkt stehen. (P623 = [17] Nord Methode 3)
1834	Referenzpunktmethode siehe P623

3.3.3.5 MC_MoveAbsolute

	SK 5xxP	SK 54xE	SK 53xE SK 52xE	On/On+	SK 2xxE	SK 2xxE-FDS	SK 180E SK 190E	SK 155E-FDS SK 175E-FDS
Verfügbarkeit	Х	Х	Χ	On+	Χ	X	Χ	

Schreibt einen Positions- und Geschwindigkeitssollwert zum Frequenzumrichter, sofern **EXECUTE** von 0 auf 1 wechselt (Flanke). Die Sollfrequenz **VELOCITY** wird nach der im MC_MoveVelocity erläuterten Skalierung übergeben.

POSITION:

MODE = False:

Die Sollposition ergibt sich aus dem in **POSITION** übergebenen Wert.

MODE = True:

Der in **POSITION** übergebene Wert entspricht <u>um 1 erhöht</u> dem Index aus Parameter P613. Die in diesem Parameterindex hinterlegte Position entspricht der Sollposition.

Beispiel:

Mode = True; Position = 12

Der FB fährt die Position, die im aktuellen Parametersatz von P613[-13] steht, an.

Hat der Umrichter die Sollposition erreicht, so wird **DONE** auf 1 gesetzt. **DONE** wird mit dem Rücksetzen von **EXECUTE** gelöscht. Wenn **EXECUTE** vor dem Erreichen der Zielposition gelöscht wird, so wird **DONE** für einen Zyklus auf 1 gesetzt. Während des Verfahrens zur Sollposition ist **BUSY** aktiv. Sollte der Vorgang abgebrochen werden (z.B. durch einen anderen MC Funktionsbaustein), wird **COMMANDABORTED** gesetzt. Im Fehlerfall wird **ERROR** auf 1 und in **ERRORID** der entsprechende Fehlercode gesetzt. **DONE** ist in diesem Fall 0. Bei einer negativen Flanke an **EXECUTE** werden alle Ausgänge auf 0 zurückgesetzt.

VAR_INPUT			VAR_OUTPU	т	
Eingang	Erläuterung	Тур	Ausgang	Erläuterung	
EXECUTE	Freigabe	BOOL	DONE	Vorgegebene Sollposition erreicht	BOOL
POSITION	Sollposition	DINT	BUSY	Sollposition nicht erreicht	BOOL
VELOCITY	Sollfrequenz	INT	COMMAND- ABORTED	Befehl abgebrochen	BOOL
MODE	Modus Quelle Sollposition	BOOL	ERROR Fehler im FB		BOOL
			ERRORID	Fehlercode	INT
ERRORID	Erläuterung				
0	Kein Fehler				
0x1000	FU ist nicht freigegeben				
0x1200	Lageregelung ist nicht ak	tiviert			
0x1201	In den PLC Sollwerten is	t die High	Position nicht	eingetragen (P553)	
0x1202	In den PLC Sollwerten is	t die Low	Position nicht e	eingetragen (P553)	

Beispiel in ST:

```
(* Das Gerät wird freigegeben, wenn DIG1 = TRUE *)
Power(Enable := _5_State_digital_input.0);
IF Power.Status THEN
   (* Das Gerät ist freigegeben und fährt auf Position 20000 mit 50% max. Frequenz.
        Der Motor benötigt für diese Aktion ein Geber und Lageregelung muss aktive sein. *)
MoveAbs(Execute := _5_State_digital_input.1, Velocity := 16#2000, Position := 20000);
END_IF
```


3.3.3.6 MC_MoveAdditive

	SK 5xxP	SK 54xE	SK 53xE SK 52xE	On/On+	SK 2xxE	SK 2xxE-FDS		SK 155E-FDS SK 175E-FDS
Verfügbarkeit	Х	Х	Х	On+	Х	Х	Х	

Entspricht bis auf den Eingang **DISTANCE** in allen Punkten dem MC_MoveAbsolute. Die Sollposition ergibt sich aus der Addition von aktueller Sollposition und der übergebenen **DISTANCE**.

VAR_INPUT			VAR_OUTPU	т	
Eingang	Erläuterung	Тур	Ausgang	Erläuterung	Тур
EXECUTE	Freigabe	BOOL	DONE	Vorgegebene Sollposition erreicht	BOOL
DISTANCE	Sollposition	DINT	COMMAND- ABORTED	Befehl abgebrochen	BOOL
VELOCITY	Sollfrequenz	INT	ERROR	Fehler im FB	BOOL
MODE	Modus Quelle Sollposition	BOOL	ERRORID	Fehlercode	INT
			BUSY	Sollposition nicht erreicht	BOOL
ERRORID	Erläuterung				
0	Kein Fehler				
1000h	FU ist nicht freigegeben				
1200h	Lageregelung ist nicht ak	tiviert			
1201h	In den PLC Sollwerten is	t die High	Position nicht	eingetragen (P553)	
1202h	In den PLC Sollwerten is	t die Low	Position nicht e	eingetragen (P553)	

3.3.3.7 MC_MoveRelative

	SK 5xxP	SK 54xE	SK 53xE SK 52xE	On/On+	SK 2xxE	SK 2xxE-FDS		SK 155E-FDS SK 175E-FDS
Verfügbarkeit	Х	Χ	Χ	On+	Χ	X	Χ	

Entspricht bis auf den Eingang **DISTANCE** in allen Punkten dem MC_MoveAbsolute. Die Sollposition ergibt sich aus der Addition von aktueller Istposition und der übergebenen **DISTANCE**.

VAR_INPUT			VAR_OUTPUT			
Eingang	Erläuterung	Тур	Ausgang	Ausgang Erläuterung		
EXECUTE	Freigabe	BOOL	DONE	Vorgegebene Sollposition erreicht	BOOL	
DISTANCE	Sollposition	DINT	COMMAND- ABORTED	Befehl abgebrochen	BOOL	
VELOCITY	Sollfrequenz	INT	ERROR	Fehler im FB	BOOL	
MODE	Modus Quelle Sollposition	BOOL	ERRORID Fehlercode		INT	
			BUSY	Sollposition nicht erreicht	BOOL	
ERRORID	Erläuterung					
0	Kein Fehler					
1000h	FU ist nicht freigegeben					
1200h	Lageregelung ist nicht ak	tiviert				
1201h	In den PLC Sollwerten is	t die High	Position nicht	eingetragen (P553)		
1202h	In den PLC Sollwerten is	t die Low	Position nicht e	eingetragen (P553)		

3.3.3.8 MC_MoveVelocity

	SK 5xxP	SK 54xE	SK 53xE SK 52xE	On/On+	SK 2xxE	SK 2xxE-FDS	SK 180E SK 190E	SK 155E-FDS SK 175E-FDS
Verfügbarkeit	Х	Х	Х	Х	Χ	X	Χ	

Setzt die Sollfrequenz für den Frequenzumrichter, sofern **EXECUTE** von 0 auf 1 wechselt (Flanke). Hat der Frequenzumrichter die Sollfrequenz erreicht, so wird **INVELOCITY** auf 1 gesetzt. Während der FU auf die Sollfrequenz beschleunigt, ist der **BUSY** Ausgang aktiv. Wurde **EXECUTE** bereits auf 0 gesetzt, dann wird **INVELOCITY** nur für einen Zyklus auf 1 gesetzt. Sollte der Vorgang abgebrochen werden (z.B. durch einen anderen MC Funktionsbaustein), wird **COMMANDABORTED** gesetzt.

Bei einer negativen Flanke an **EXECUTE** werden alle Ausgänge auf 0 zurückgesetzt.

VELOCITY wird skaliert nach folgender Formel eingegeben:

VELOCITY = (Sollfrequenz (Hz) × 0x4000) / P105

VAR_INPUT			VAR_OUTPUT				
Eingang	Erläuterung	Тур	Ausgang	ang Erläuterung			
EXECUTE	Freigabe	BOOL	INVELOCIT Y	Vorgegebene Sollfrequenz erreicht	BOOL		
VELOCITY	Sollfrequenz	INT	BUSY	Sollfrequenz noch nicht erreicht	BOOL		
			COMMAND- ABORTED	Befehl abgebrochen	BOOL		
			ERROR	Fehler im FB	BOOL		
			ERRORID	Fehlercode	INT		
ERRORID	Erläuterung						
0	Kein Fehler						
1000h	FU ist nicht freigegeben						
1100h	FU nicht im Drehzahl Mo	ode (Lage	regelung aktive)			
1101h	Keine Sollfrequenz para	metriert (F	P553)				

Beispiel AWL:

```
CAL Power
CAL Move

LD TRUE
ST Power.Enable

(* 20 Hz einstellen (Max. 50 Hz) *)
LD DINT#20
MUL 16#4000
DIV 50

DINT_TO_INT
ST Move.Velocity

LD Power.Status
ST Move.Execute
```

Beispiel in ST:

```
(* Gerät betriebsbereit wenn DIG1 gesetzt *)
Power(Enable := _5_State_digital_input.0);
IF Power.Status THEN
   (* Gerät freigeben mit 50% der max. Frequenz wenn DIG2 gesetzt *)
   MoveVelocity(Execute := _5_State_digital_input.1, Velocity := 16#2000);
END_IF
```


3.3.3.9 MC_Power

	SK 5xxP	SK 54xE	SK 53xE SK 52xE	On/On+	SK 2xxE	SK 2xxE-FDS		SK 155E-FDS SK 175E-FDS
Verfügbarkeit	Χ	Χ	Χ	Χ	Χ	X	Χ	X

Über diese Funktion kann die Endstufe des Gerätes ein- oder ausgeschaltet werden. Wird der **ENABLE** Eingang auf 1 gesetzt, dann wird die Endstufe freigegeben. Voraussetzung dafür ist das sich das Gerät im State "Einschaltsperre" oder "Einschaltbereit" befindet. Sollte das Gerät im State "Störung" oder "Störungsreaktion aktiv" sein, muss zuerst die Störung beseitig und quittiert werden. Erst dann kann eine Freigabe über diesen Block erfolgen. Befindet sich das Gerät im State "Nicht Einschaltbereit", ist ein Einschalten auch nicht möglich. In allen Fällen geht der FB in den Fehlerstate und **ENABLE** muss auf 0 gesetzt werden, um den Fehler zu quittieren.

Wird der **ENABLE** Eingang auf 0 gesetzt, dann wird das Gerät ausgeschaltet. Geschieht dies bei laufendem Motor, so wird dieser über die in P103 eingestellte Rampe vorher auf 0 Hz heruntergefahren.

Der Ausgang STATUS ist 1 wenn die Endstufe des Gerätes eingeschaltet ist, andernfalls ist er 0.

ERROR und **ERRORID** werden zurückgesetzt, wenn **ENABLE** auf 0 geschaltet wird.

VAR_INPUT			VAR_OUTPUT						
Eingang Erläuterung Typ		Тур	Ausgang	Erläuterung	Тур				
ENABLE	Freigabe	BOOL	STATUS	Motor wird bestromt	BOOL				
			ERROR	Fehler im FB	BOOL				
			ERRORID	Fehlercode	INT				
ERRORID	Erläuterung								
0	Kein Fehler								
1001h	Stopp Funktion ist aktiv	Stopp Funktion ist aktiv							
1300h	Gerät befindet sich nicht	im State	"Einschaltberei	t" oder "Einschaltsperre"					

Beispiel in AWL:

```
CAL Power
CAL Move

LD TRUE
ST Power.Enable

(* 20 Hz einstellen (Max. 50 Hz) *)
LD DINT#20
MUL 16#4000
DIV 50

DINT_TO_INT
ST Move.Velocity

LD Power.Status
ST Move.Execute
```


Beispiel in ST:

```
(* Power Block aktivieren *)
Power(Enable := TRUE);
IF Power.Status THEN
  (* Das Gerät ist einschaltbereit *)
END IF
```


3.3.3.10 MC_ReadActualPos

	SK 5xxP	SK 54xE	SK 53xE SK 52xE	On/On+	SK 2xxE	SK 2xxE-FDS	SK 180E SK 190E	SK 155E-FDS SK 175E-FDS
Verfügbarkeit	Х	Х	X	On+	Х	X	Χ	

Liefert kontinuierlich die aktuelle Istposition des Frequenzumrichters, wenn **ENABLE** auf 1 steht. Sobald eine gültige Istposition am Ausgang anliegt wird **VALID** auf gültig gesetzt. Im Fehlerfall wird **ERROR** auf 1 gesetzt und **VALID** ist in diesem Fall 0.

Skalierung Position: 1 Motorumdrehung = 1000

VAR_INPUT			VAR_OUTPUT				
Eingang Erläuterung 1		Typ Ausgang		Erläuterung	Тур		
ENABLE	Freigabe		VALID	Ausgang ist gültig	BOOL		
			ERROR	Fehler im FB	BOOL		
			POSITION	Aktuelle Istposition des FU	DINT		

Beispiel in ST:

ReadActualPos(Enable := TRUE);
IF ReadActualPos.Valid THEN
 Pos := ReadActualPos.Position;
END IF

3.3.3.11 MC_ReadParameter

	SK 5xxP	SK 54xE	SK 53xE SK 52xE	On/On+	SK 2xxE	SK 2xxE-FDS		SK 155E-FDS SK 175E-FDS
Verfügbarkeit	Х	X	Χ	Х	Χ	X	Χ	Х

Liest einen Parameter zyklisch aus dem Gerät, sofern ENABLE auf 1 gesetzt ist. Der gelesene Parameter wird in Value abgelegt und ist gültig, wenn DONE auf 1 gesetzt ist. Für die Dauer des Lesevorgangs wird der Ausgang BUSY auf 1 gesetzt. Bleibt ENABLE auf 1 dann wird der Parameter ständig zyklisch ausgelesen. Parameternummer und Index können jederzeit bei aktivem ENABLE geändert werden. Jedoch ist schwierig zu erkennen, wann der neue Wert ausgelesen ist, da das DONE Signal die gesamte Zeit 1 ist. In diesem Fall ist es empfehlenswert das ENABLE Signal für einen Zyklus auf 0 zu setzen, da das DONE Signal dann zurückgesetzt wird. Der Parameterindex ergibt sich aus dem Index in der Dokumentation minus 1. So wird z.B. P700 Index 3 ("Grund Einschaltsperre") über den Parameterindex 2 abgefragt. Im Fehlerfall wird ERROR auf 1 gesetzt. DONE ist in diesem Fall 0 und die ERRORID enthält den Fehlercode. Wird das ENABLE Signal auf 0 gesetzt, dann werden alle Signale und die ERRORID gelöscht.

VAR_INPUT			VAR_OUTPU	Т						
Eingang	Erläuterung	Тур	Ausgang	Erläuterung	Тур					
ENABLE	Freigabe	BOOL	DONE	Value ist gültig	BOOL					
PARAMETERNU MBER	Parameternummer	INT	ERROR	Lesevorgang ist fehlgeschlagen	BOOL					
PARAMETERIND EX	Parameterindex	INT	BUSY	Der Vorgang ist nicht abgeschlossen	BOOL					
			ERRORID	Fehlercode	INT					
			VALUE	Ausgelesener Parameter	DINT					
ERRORID	Erläuterung	•			•					
0	unzulässige Parameternu	ummer								
3	fehlerhafter Parametering	dex								
4	kein Array	kein Array								
201	Ungültiges Auftragseleme	ent im zu	letzt empfange	nen Auftrag						
202	Interne Antwortkennung ı	nicht abb	ildbar							

Beispiel in ST:

```
(* Motionbaustein FB_ReadParameter *)
ReadParam(Enable := TRUE,Parameternumber := 102, ParameterIndex := 0);
IF ReadParam.Done THEN
  Value := ReadParam.Value;
  ReadParam(Enable := FALSE);
END IF
```


3.3.3.12 MC_ReadStatus

	SK 5xxP	SK 54xE	SK 53xE SK 52xE	On/On+	SK 2xxE	SK 2xxE-FDS	SK 180E SK 190E	SK 155E-FDS SK 175E-FDS
Verfügbarkeit	Χ	X	X	Χ	Χ	X	Χ	X

Liest den Status des Gerätes aus. Die Statusmaschine orientiert sich an der PLCopen Spezifikation "Function blocks for motion control". Solange **ENABLE** auf 1 steht wird der Zustand ausgelesen.

VAR_INPUT			VAR_OUTPU	т	
Eingang	Erläuterung	Тур	Ausgang	Erläuterung	Тур
ENABLE	Freigabe	BOOL	VALID	Ausgang ist gültig	BOOL
			ERROR	Fehler im FB	BOOL
			ERRORSTO P	Das Gerät hat einen Fehler	BOOL
			DISABLED	Die Endstufe des Gerätes ist ausgeschaltet	BOOL
			STOPPING	Ein Stopp Befehl ist aktiv	BOOL
			DISCRETEM OTION	Einer der drei Positionier FB ist aktiv	BOOL
			CONTINUO USMOTION	Der MC_Velocity ist aktiv	BOOL
			HOMING	Der MC_Home ist aktiv	BOOL
			STANDSTIL L	Das Gerät hat keinen aktiven Verfahrbefehl. Es steht mit Drehzahl 0 U/min und eingeschalteter Endstufe.	BOOL

Beispiel in ST:

```
ReadStatus(Enable := TRUE);
IF ReadStatus.Valid THEN
  fError := ReadStatus.ErrorStop;
  fDisable := ReadStatus.Disabled;
  fStopping := ReadStatus.Stopping;
  fInMotion := ReadStatus.DiscreteMotion;
  fInVelocity := ReadStatus.ContinuousMotion;
  fInHome := ReadStatus.Homing;
  fStandStill := ReadStatus.StandStill;
end_if
```


3.3.3.13 MC_Reset

	SK 5xxP	SK 54xE	SK 53xE SK 52xE	On/On+	SK 2xxE	SK 2xxE-FDS		SK 155E-FDS SK 175E-FDS
Verfügbarkeit	X	X	Х	Χ	Χ	X	Х	Х

Rücksetzen eines Fehlers im Gerät (Störungsquittierung), bei einer steigenden Flanke von **EXECUTE**. Im Fehlerfall wird **ERROR** auf 1 gesetzt und die Fehlerursache in **ERRORID** eingetragen. Bei einer negativen Flanke an **EXECUTE** werden alle Fehler zurückgesetzt.

VAR_INPUT			VAR_OUTPUT							
Eingang	Erläuterung	Тур	Ausgang	Erläuterung	Тур					
EXECUTE	Start	BOOL	DONE	Gerätefehler zurückgesetzt	BOOL					
			ERROR	Fehler im FB	BOOL					
			ERRORID	Fehlercode	INT					
			BUSY	Resetvorgang ist noch aktiv	BOOL					
ERRORID	Erläuterung				•					
0	Kein Fehler									
1001h	Stopp Funktion ist aktiv	topp Funktion ist aktiv								
1700h	Ein Fehler – Reset konnt	e nicht au	usgeführt werde	en, die Ursache für den Fehler liegt no	och an					

Beispiel in ST:

```
Reset(Execute := TRUE);
IF Reset.Done THEN
  (* Der Fehler wurde zurückgesetzt *)
Reset(Execute := FALSE);
ELSIF Reset.Error THEN
  (* Reset konnte nicht ausgeführt werden, die Ursache für den Fehler liegt noch an *)
Reset(Execute := FALSE);
END IF
```


3.3.3.14 MC_Stop

	SK 5xxP	SK 54xE	SK 53xE SK 52xE	On/On+	SK 2xxE	SK 2xxE-FDS	SK 180E SK 190E	SK 155E-FDS SK 175E-FDS
Verfügbarkeit	Х	Х	Х	Χ	Х	X	Х	X

Bei steigender Flanke (0 auf 1) wird das Gerät in den Zustand **STANDINGSTILL** gesetzt. Alle gerade aktiven Motion Funktionen werden abgebrochen. Das Gerät bremst auf 0 Hz ab und schaltet die Endstufe aus. Solange der Stopp Befehl aktiv ist (**EXECUTE** = 1), werden alle anderen Motion FB geblockt. Der **BUSY** Ausgang wird mit der steigenden Flanke an **EXECUTE** aktiv und bleibt dies solange bis eine fallende Flanke an **EXECUTE** erfolgt.

VAR_INPUT			VAR_OUTPUT				
Eingang Erläuterung Typ		Тур	Ausgang	Erläuterung	Тур		
EXECUTE	Start	BOOL	DONE	Befehl ist ausgeführt	BOOL		
			BUSY	Befehl ist aktiv	BOOL		

3.3.3.15 MC_WriteParameter_16 / MC_WriteParameter_32

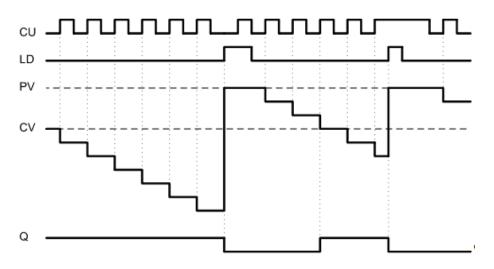
	SK 5xxP	SK 54xE	SK 53xE SK 52xE	On/On+	SK 2xxE	SK 2xxE-FDS		SK 155E-FDS SK 175E-FDS
Verfügbarkeit	Х	Х	Х	Х	Х	X	Х	Х

Schreibt einen 16/32 Bit Parameter in das Gerät, wenn **EXECUTE** von 0 auf 1 wechselt (Flanke). Der Parameter wurde geschrieben, wenn **DONE** auf 1 gesetzt ist. Für die Dauer des Lesevorgangs wird der Ausgang **BUSY** auf 1 gesetzt. Im Fehlerfall wird **ERROR** auf 1 gesetzt und die **ERRORID** enthält den Fehlercode. Die Signale **DONE**, **ERROR**, **ERRORID** bleiben solange gesetzt, bis **EXECUTE** wieder auf 0 wechselt. Wechselt das **EXECUTE** Signal auf 0, dann wird der Schreibprozess nicht abgebrochen. Nur das **DONE** Signal bleibt nur für 1 PLC Zyklus gesetzt.

VAR_INPUT			VAR_OUTPU	т					
Eingang	Erläuterung	Тур	Ausgang	Erläuterung	Тур				
EXECUTE	Freigabe	BOOL	DONE	Value ist gültig	BOOL				
PARAMETERNU MBER	Parameternummer	INT	BUSY	Der Schreibvorgang ist aktiv	BOOL				
PARAMETERIND EX	Parameterindex	INT	ERROR	Lesevorgang ist fehlgeschlagen	BOOL				
VALUE	Zu schreibender Wert	INT	ERRORID	Fehlercode	INT				
RAMONLY	Speichere den Wert nur im RAM (ab Version V2.1)	BOOL							
ERRORID	Erläuterung								
0	unzulässige Parameternu	ımmer							
1	Parameterwert nicht ände	erbar							
2	untere oder obere Wertgi	enze übe	erschritten						
3	fehlerhafter Parametering	dex							
4	kein Array								
5	Unzulässiger Datentyp								
6	Nur Rücksetzbar (es darf	nur 0 ge	schrieben werd	den)					
7	Beschreibungselement n	icht ände	rbar						
201	Ungültiges Auftragseleme	ent im zu	letzt empfange	nen Auftrag					
202	Interne Antwortkennung ı	nicht abb	ildbar						

Beispiel in ST:

```
WriteParam16(Execute := TRUE, ParameterNumber := 102, ParameterIndex := 0, Value := 300);
IF WriteParam16.Done THEN
   WriteParam16(Execute := FALSE);
END IF;
```



3.3.4 Standard

3.3.4.1 CTD Abwärtszähler

	SK 5xxP	SK 54xE	SK 53xE SK 52xE	On/On+	SK 2xxE	SK 2xxE-FDS	SK 180E SK 190E	SK 155E-FDS SK 175E-FDS
Verfügbarkeit	Х	Х	Х	Х	Х	X	Х	Х

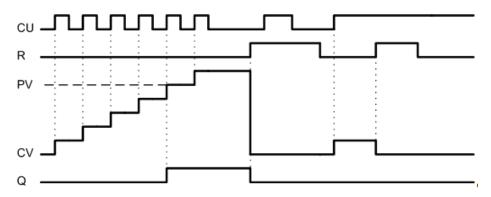
Bei steigender Flanke an **CD** wird der Zähler des Funktionsblockes **CV** um eins verringert, solange CV größer als -32768 ist. Wenn **CV** kleiner oder gleich 0 ist, bleibt der Ausgang **Q** auf TRUE. Über **LD** kann der Zähler **CV** auf den in **PV** gespeicherten Wert gesetzt werden.

VAR_INPUT			VAR_OUTP	OUTPUT			
Eingang	Erläuterung	Тур	Ausgang	Erläuterung	Тур		
CD	Zählereingang	BOOL	Q	TRUE, wenn CV <= 0	BOOL		
LD	Lade Startwert	BOOL	cv	Aktueller Zählerstand	INT		
PV	Startwert	INT					

Beispiel in AWL:

```
LD VarBOOL1
ST CTDInst.CD
LD VarBOOL2
ST CTDInst.LD
LD VarINT1
ST CTDInst.PV
CAL CTDInst
LD CTDInst
LD CTDInst
LD CTDInst
LD CTDInst
ST VarBOOL3
LD CTDInst.CV
ST VarINT2
```

Beispiel in ST:


```
CTDInst(CD := VarBOOL1, LD := VarBOOL2, PV := VarINT1);
VarBOOL3 := CTDInst.Q;
VarINT2 := CTDInst.CV;
```


3.3.4.2 CTU Aufwärtszähler

	SK 5xxP	SK 54xE	SK 53xE SK 52xE	On/On+	SK 2xxE	SK 2xxE-FDS		SK 155E-FDS SK 175E-FDS
Verfügbarkeit	Х	Х	Х	Х	Х	X	Х	Х

Bei steigender Flanke an **CU** wird der Zähler des Funktionsblockes **CV** um eins erhöht. **CV** kann bis auf den Wert 32767 gezählt werden. Solange **CV** größer oder gleich **PV** ist, bleibt der Ausgang **Q** auf TRUE. Über **R** kann der Zähler **CV** auf den Wert null zurückgesetzt werden.

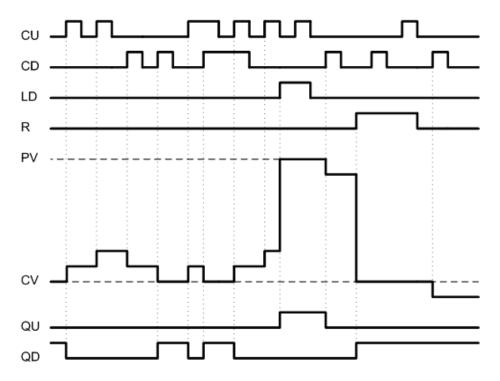
VAR_INP	VAR_INPUT			VAR_OUTPUT			
Eingang	ang Erläuterung Typ		Ausgang	Erläuterung	Тур		
CU	Zählereingang	BOOL	Q	TRUE, wenn CV >= PV	BOOL		
R	Reset Zählerstand	BOOL	cv	Aktueller Zählerstand	INT		
PV	Grenzwert	INT					

Beispiel in AWL:

```
LD VarBOOL1
ST CTUInst.CU
LD VarBOOL2
ST CTUInst.R
LD VarINT1
ST CTUInst.PV
CAL CTUInst(CU := VarBOOL1, R := VarBOOL2, PV := VarINT1)
LD CTUInst.Q
ST VarBOOL3
LD CTUInst.CV
ST VarINT2
```

Beispiel in ST:

```
CTUInst(CU := VarBOOL1, R := VarBOOL2, PV := VarINT1);
VarBOOL3 := CTUInst.Q;
VarINT2 := CTUInst.CV;
```



3.3.4.3 CTUD Auf- und Abwärtszähler

	SK 5xxP	SK 54xE	SK 53xE SK 52xE	On/On+	SK 2xxE	CV OWE FRO		SK 155E-FDS SK 175E-FDS
Verfügbarkeit	Х	Х	Х	Х	Х	Х	Х	X

Bei steigender Flanke an **CU** wird der Zähler CV um eins erhöht, solange CV kleiner als 32767 ist. Bei steigender Flanke an **CD** wird der Zähler **CV** um eins verringert, solange **CV** größer als -32768 ist. Über **R** kann der Zähler **CV** auf den Wert Null gesetzt werden. Über **LD** wird der in **PV** gespeicherte Wert in **CV** kopiert.

R hat Vorrang gegenüber **LD**, **CU** und **CV**. **PV** kann jederzeit verändert werden, **QU** bezieht sich immer auf den aktuell eingestellten Wert.

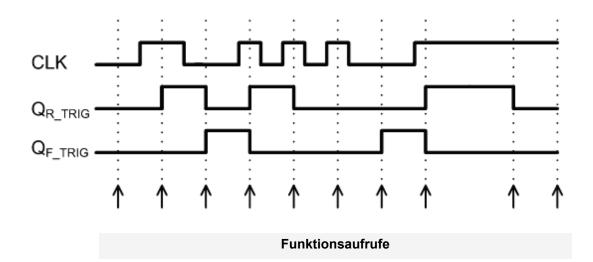
VAR_INP	υτ		VAR_OUTP	VAR_OUTPUT			
Eingang	Erläuterung Typ		Ausgang	Erläuterung	Тур		
CU	Aufwärtszählen	BOOL	QU	TRUE, wenn CV >= PV	BOOL		
CD	Abwärtszählen	BOOL	QD	TRUE, wenn CV <= 0	BOOL		
R	Reset Zählerstand	BOOL	cv	Aktueller Zählerstand	INT		
LD	Lade Startwert	BOOL					
PV	Startwert / Grenzwert	INT					

Beispiel in AWL:

```
LD VarBOOL1
ST CTUDInst.CU
LD VarBOOL3
ST CTUDInst.R
LD VarBool4
ST CTUDInst.LD
LD VarINT1
ST CTUINST.PV
CAL CTUDINST.QU
ST VarBOOL5
LD CTUDINST.QD
ST VarBOOL5
LD CTUDINST.CD
ST VarBOOL5
LD CTUINST.CV
ST VarINT2
```

Beispiel in ST:

```
CTUDInst(CU:=VarBOOL1, R:=VarBOOL3, LD:=VarBOOL4, PV:=VarINT1);
VarBOOL5 := CTUDInst.QU;
VarBOOL5 := CTUDInst.QD;
VarINT2 := CTUDInst.CV;
```



3.3.4.4 R_TRIG und F_TRIG

	SK 5xxP	SK 54xE	SK 53xE SK 52xE	On/On+	SK 2xxE	SK 2xxE-FDS	SK 180E SK 190E	SK 155E-FDS SK 175E-FDS
Verfügbarkeit	Х	Х	Х	Х	Χ	X	Χ	Х

Beide Funktionen dienen der Flankenerkennung. Wird eine Flanke auf **CLK** erkannt geht **Q** bis zum nächsten Funktionsaufruf auf TRUE, danach wieder auf FALSE. Erst mit einer neuen Flanke kann **Q** wieder für einen Zyklus TRUE werden.

- R_TRIG = steigende Flanke
- F_TRIG = fallende Flanke

VAR_INPUT			VAR_OUTPUT			
Eingang	Erläuterung	Тур	Ausgang	Erläuterung Ty		
CLK	Setzen	BOOL	Q	Ausgang	BOOL	

Beispiel in AWL:

LD VarBOOL1 ST RTRIGInst.CLK CAL RTRIGInst LD RTRIGInst.Q ST VarBOOL2

Beispiel in ST:

RTRIGInst (CLK:= VarBOOL1);
VarBOOL2 := RTRIGInst.Q;

1 Information

Die Ausgabe der Funktion ändert sich nur, wenn die Funktion aufgerufen wird. Aus diesem Grund ist es ratsam, die Flankendetektion kontinuierlich mit dem SPS-Zyklus aufzurufen.

3.3.4.5 RS Flip Flop

	SK 5xxP	SK 54xE	SK 53xE SK 52xE	On/On+	SK 2xxE	SK 2xxE-FDS		SK 155E-FDS SK 175E-FDS
Verfügbarkeit	Х	Х	Х	Х	Х	Х	Х	Х

Bistabile Funktion, über S wird der Ausgang Q1 gesetzt und über R1 wieder gelöscht. Liegt an R1 und S zeitgleich ein TRUE an, so ist R1 dominant.

VAR_INPUT			VAR_OUTP	PUT			
Eingang	Erläuterung	Тур	Ausgang	Erläuterung	Тур		
S	Setzen	BOOL	Q1	Ausgang	BOOL		
R1	Reset	BOOL					

Beispiel in AWL:

LD VarBOOL1 ST RSInst.S LD VarBOOL2 ST RSInst.R1 CAL RSInst

LD RSInst.Q1 ST VarBOOL3

Beispiel in ST:

RSInst(S:= VarBOOL1 , R1:=VarBOOL2); VarBOOL3 := RSInst.Q1;

3.3.4.6 SR Flip Flop

	SK 5xxP	SK 54xE	SK 53xE SK 52xE	On/On+	SK 2xxE	SK 2xxE-FDS	SK 180E SK 190E	SK 155E-FDS SK 175E-FDS
Verfügbarkeit	Х	Х	Х	Х	Χ	X	Χ	Х

Bistabile Funktion, über S1 wird der Ausgang Q1 gesetzt und über R wieder gelöscht. Liegt an R1 und S zeitgleich ein TRUE an, so ist S1 dominant.

VAR_INPUT			VAR_OUTPUT			
Eingang	Erläuterung	Тур	Ausgang	Erläuterung	Тур	
S1	Setzen	BOOL	Q1	Ausgang	BOOL	
R	Reset	BOOL				

Beispiel in AWL:

LD VarBOOL1 ST SRInst.S1

LD VarBOOL2

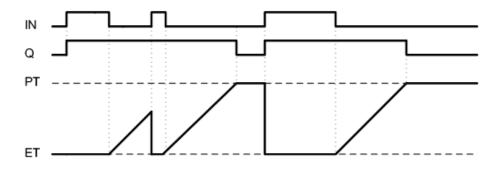
ST SRInst.R

CAL RSInst LD SRInst.Q1

ST VarBOOL3

Beispiel in ST:

```
SRInst(S1:= VarBOOL1 , R:=VarBOOL2);
VarBOOL3 := SRInst.Q1;
```



3.3.4.7 TOF Ausschaltverzögerung

	SK 5xxP	SK 54xE	SK 53xE SK 52xE	On/On+	SK 2xxE	SK 2xxE-FDS		SK 155E-FDS SK 175E-FDS
Verfügbarkeit	Х	Х	X	Х	Х	X	Х	X

Wird **IN** = TRUE, dann wird **Q** auf TRUE gesetzt. Geht **IN** auf FALSE, läuft der Timer hoch. Solange der Timer läuft (**ET** < **PT**) bleibt **Q** auf TRUE gesetzt. Ist (**ET** = **PT**) bleibt der Timer stehen, **Q** wird dann FALSE. Bei einer neuen steigenden Flanke auf **IN**, wird der Timer **ET** wieder auf null gesetzt.

Für eine vereinfachte Eingabe können hier Literale benutzt werden, wie z.B.

LD TIME#50s20ms = 50,020 Sekunden
 LD TIME#1d30m = 1 Tag und 30 Minuten

VAR_INP	UT	VAR_OUTPUT				
Eingang	Erläuterung	Тур	Ausgang	Erläuterung	Тур	
IN	Timer aktiv	BOOL	Q	TRUE ß (ET <pt)<="" th=""><th>BOOL</th></pt>	BOOL	
PT	Zeitdauer	DINT	ET	Aktueller Stand des Timers	DINT	

Beispiel in AWL:

LD VarBOOL1 ST TOFINST.IN LD DINT#5000 ST TOFINST.PT CAL TOFINST LD TOFINST.Q ST VarBOOL2

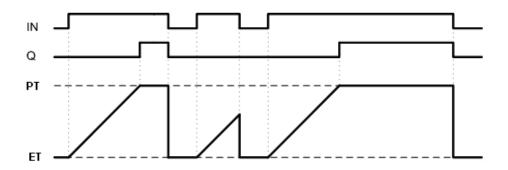
Beispiel in ST:

TOFInst(IN := VarBOOL1, PT:= T#5s); VarBOOL2 := TOFInst.Q;

Information

Timer ET

Die Zeit ET läuft unabhängig von einem PLC Zyklus. Das Starten des Timers mit IN und das Setzen des Ausgangs Q werden erst mit dem Funktionsaufruf "CAL" ausgeführt. Der Funktionsaufruf findet in einem PLC Zyklus statt, dieser kann aber bei längeren PLC Programmen größer 5 ms sein, sodass zeitlich ein Jitter entstehen kann.


3.3.4.8 TON Einschaltverzögerung

	SK 5xxP	SK 54xE	SK 53xE SK 52xE	On/On+	SK 2xxE	SK 2xxE-FDS		SK 155E-FDS SK 175E-FDS
Verfügbarkeit	Х	Х	Х	Х	Х	X	Х	Х

Wird **IN** = TRUE gesetzt, dann läuft der Timer hoch. Wenn **ET** = PT ist, wird **Q** auf TRUE gesetzt und der Timer bleibt stehen. **Q** bleibt solange TRUE wie **IN** auch TRUE ist. Bei einer neuen steigenden Flanke auf **IN** fängt der Timer wieder bei null an zu laufen. **PT** kann verändert werden während der Timer läuft. Die Zeitdauer wird in **PT** in Millisekunden eingegeben. Damit ist eine Zeitverzögerung zwischen 5ms und 24,8 Tagen möglich. Da die Zeitbasis der PLC bei 5ms liegt, ist die minimale Zeitverzögerung auch 5ms.

Für eine vereinfachte Eingabe können hier Literale benutzt werden, wie z.B.

LD TIME#50s20ms = 50,020 Sekunden
 LD TIME#1d30m = 1 Tag und 30 Minuten

VAR_INPUT	-	VAR_OUTPUT			
Eingang	Erläuterung	Тур	Ausgang	Erläuterung	Тур
IN	Timer aktiv	BOOL	Q	TRUE ß (IN=TRUE & ET=PT)	BOOL
PT	Zeitdauer	DINT	ET	Aktueller Stand des Timers	DINT

Beispiel in AWL:

LD VarBOOL1 ST TONINST.IN LD DINT#5000 ST TONINST.PT CAL TONINST.Q ST VarBOOL2

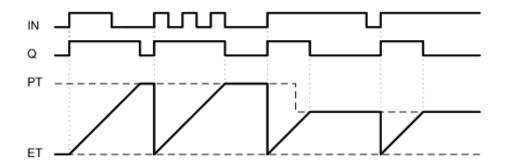
Beispiel in ST:

TONInst(IN := VarBOOL1, PT:= T#5s);
VarBOOL2 := TONInst.Q;

1 Information

Timer ET

Die Zeit ET läuft unabhängig von einem PLC Zyklus. Das Starten des Timers mit IN und das Setzen des Ausgangs Q werden erst mit dem Funktionsaufruf "CAL" ausgeführt. Der Funktionsaufruf findet in einem PLC Zyklus statt, dieser kann aber bei längeren PLC Programmen größer 5 ms sein, sodass zeitlich ein Jitter entstehen kann.


3.3.4.9 TP Zeitimpuls

	SK 5xxP	SK 54xE	SK 53xE SK 52xE	On/On+	SK 2xxE	SK 2xxE-FDS		SK 155E-FDS SK 175E-FDS
Verfügbarkeit	Х	X	X	Х	Х	X	X	X

Bei einer positiven Flanke an **IN** wird der Timer mit dem Wert 0 gestartet. Der Timer zählt bis auf den in **PT** eingetragenen Wert hoch und bleibt dann stehen. Dieser Vorgang ist nicht unterbrechbar! PT kann während des Hochzählens verändert werden. Der Ausgang **Q** ist TRUE, solange der Timer **ET** kleiner als **PT** ist. Wenn **ET = PT** ist und eine steigende Flanke an **IN** erkannt wird, wird der Timer wieder bei 0 gestartet.

Für eine vereinfachte Eingabe können hier Literale benutzt werden, wie z.B.

LD TIME#50s20ms = 50,020 Sekunden
 LD TIME#1d30m = 1 Tag und 30 Minuten

VAR_INPUT	7	VAR_OUTPUT			
Eingang	gang Erläuterung Typ		Ausgang	Erläuterung	Тур
IN	Timer aktiv	BOOL	Q	TRUE ß (ET <pt)<="" td=""><td>BOOL</td></pt>	BOOL
PT	Zeitdauer	DINT	ET	Aktueller Stand des Timers	DINT

Beispiel in AWL:

LD VarBOOL1 ST TPInst.IN LD DINT#5000 ST TPInst.PT CAL TPInst LD TPInst.Q ST VarBOOL2

Beispiel in ST:

TPInst(IN := VarBOOL1, PT:= T#5s);
VarBOOL2 := TPInst.Q;

i Information

Timer ET

Die Zeit ET läuft unabhängig von einem PLC Zyklus. Das Starten des Timers mit IN und das Setzen des Ausgangs Q werden erst mit dem Funktionsaufruf "CAL" ausgeführt. Der Funktionsaufruf findet in einem PLC Zyklus statt, dieser kann aber bei längeren PLC Programmen größer 5 ms sein, sodass zeitlich ein Jitter entstehen kann.

3.3.5 Zugriff auf Speicherbereiche des Frequenzumrichters

Wenn es nötig ist, größere Mengen an Daten zwischen zu speichern, an andere Geräte zu übergeben oder von anderen Geräten zu empfangen, dann ist die Verwendung der Bausteine FB_WriteTrace und FB_ReadTrace angezeigt.

3.3.5.1 FB_ReadTrace

	SK 5xxP	SK 54xE	SK 53xE SK 52xE	On/On+	SK 2xxE	SK 2xxE-FDS	 SK 155E-FDS SK 175E-FDS
Verfügbarkeit	Х	Χ	Χ	Χ	Χ	X	

Mit Hilfe dieses FB können verschiedene Speicherbereiche des FU direkt ausgelesen werden.

Wird vom FB eine positive Flanke am **ENABLE** Eingang erkannt, dann werden alle am Eingang anliegenden Parameter übernommen. Durch **STARTINDEX** und **MEMORY** wird die auszulesende Speicherstelle gekennzeichnet. Bei einem erfolgreichen Lesevorgang geht der Ausgang **VALID** auf 1 und in **VALUE** steht der ausgelesene Wert.

Wird der FB jetzt mehrfach aufgerufen und der **ENABLE** Eingang bleibt auf 1, dann wird bei jedem Aufruf die auszulesende Speicheradresse um 1 erhöht, der Inhalt der neue Speicherzelle sofort in den Ausgang **VALUE** kopiert.

Der aktuelle Speicherindex für den nächsten Zugriff kann unter dem Ausgang **ACTINDEX** ausgelesen werden. Wird das Speicherende erreicht, dann geht der Ausgang **READY** auf 1 und der Lesevorgang wird gestoppt.

Es können Werte im INT oder DINT Format gelesen werden. Bei INT Werten, ist vom Ausgang **VALUE** nur der Low Teil auszuwerten. Die Zuordnung erfolgt über den Eingang **SIZE**, eine 0 steht für INT und eine 1 für DINT Werte.

Die Zuordnung der Speicherbereiche erfolgt über den Eingang MEMORY:

MEMORY = 1 à P613[0-251] entspricht 504 INT oder 252 DINT Werten

MEMORY = 0 à P900[0-247] bis P906[0-111] entspricht 3200 INT oder 1600 DINT Werten

Der FB kann nicht durch andere Blöcke unterbrochen werden.

Mit einer negativen Flanke an ENABLE werden alle Ausgänge auf 0 gesetzt und die Funktion des FB beendet.

PLC Funktionalität – Zusatzanleitung für NORDAC - Geräte

VAR_INPUT			VAR_OUTPUT				
Eingang	Erläuterung	Тур	Ausgang	Erläuterung	Тур		
ENABLE	Ausführen	BOOL	VALID	VALID Lesevorgang erfolgreich			
SIZE	Speicherformat	BOOL	READY	Der gesamte Speicher ist ausgelesen	BOOL		
MEMORY	Auswahl Speicherbereich	BYTE	ERROR	der FB hat einen Fehler	BOOL		
STARTINDEX	Zeigt auf die zu beschreibende Speicherzelle	INT	ERRORID	Fehlercode	INT		
			ACTINDEX	Aktueller Speicherindex, aus dem im nächsten Zyklus gelesen wird	INT		
			VALUE	Ausgelesener Wert	DINT		
ERRORID	Erläuterung	•					
0	Kein Fehler						
1A00h	Wertebereich STARTINE	EX wurd	e überschritten				
1A01h	Wertebereich MEMORY	wurde üb	erschritten				

3.3.5.2 FB_WriteTrace

	SK 5xxP	SK 54xE	SK 53xE SK 52xE	On/On+	SK 2xxE	SK 2xxE-FDS	SK 180E SK 190E	SK 155E-FDS SK 175E-FDS
Verfügbarkeit	Х	Х	Х	Х	Х	X		

Über diesen FB können einzelne oder auch größere Mengen an Werten im FU zwischengespeichert werden. Das Speichern der Werte erfolgt nicht dauerhaft, d.h. nach einem Neustart des FU gehen die Werte verloren.

Wird vom FB eine positive Flanke am **ENABLE** Eingang erkannt, dann werden alle am Eingang anliegenden Parameter übernommen. Der in VALUE stehende Wert wird auf die durch **STARTINDEX** und **MEMORY** gekennzeichnete Speicherstelle geschrieben. Bei einem erfolgreichen Schreibvorgang geht der Ausgang VALID auf 1.

Wird der FB jetzt mehrfach aufgerufen und der **ENABLE** Eingang bleibt auf 1, dann wird bei jedem FB Aufruf der Eingang **VALUE** gelesen und gespeichert, sowie die Speicheradresse um 1 erhöht. Der aktuelle Speicherindex für den nächsten Zugriff kann unter dem Ausgang **ACTINDEX** ausgelesen werden. Wird das Speicherende erreicht, dann geht der Ausgang FULL auf 1 und der Speichervorgang wird gestoppt. Ist jedoch der Eingang **OVERWRITE** auf 1 gesetzt ist, so wird der Speicherindex wieder auf den **STARTINDEX** gesetzt und es werden die vorher gespeicherten Werte überschrieben.

Es können Werte im INT oder DINT Format gespeichert werden. Bei INT Werten, wird vom Eingang **VALUE** nur der Low Teil ausgewertet. Die Zuordnung erfolgt über den Eingang **SIZE**, eine 0 steht für INT und eine 1 für DINT Werte.

Die Zuordnung der Speicherbereiche erfolgt über den Eingang MEMORY:

MEMORY = 1 à P613[0-251] entspricht 504 INT oder 252 DINT Werten

MEMORY = 0 à P900[0-247] bis P906[0-111] entspricht 3200 INT oder 1600 DINT Werten

Der FB kann nicht durch andere Blöcke unterbrochen werden.

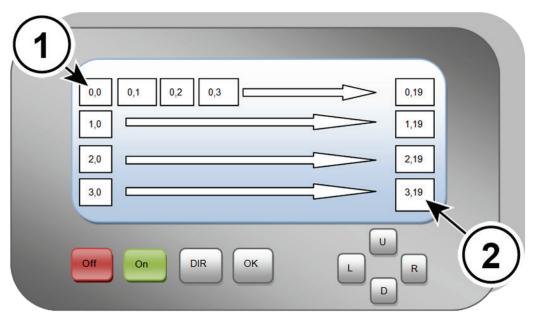
Mit einer negativen Flanke an **ENABLE** werden alle Ausgänge auf 0 gesetzt und die Funktion des FB beendet.

PLC Funktionalität – Zusatzanleitung für NORDAC - Geräte

VAR_INPUT			VAR_OUTPU	т	
Eingang	Erläuterung	Тур	Ausgang	Erläuterung	Тур
ENABLE	Ausführen	BOOL	VALID	Schreibvorgang erfolgreich	BOOL
SIZE	Speicherformat	BOOL	FULL	Komplette Speicher ist voll	BOOL
OVERWRITE	Speicher überschreibar	BOOL	ERROR	der FB hat einen Fehler	BOOL
MEMORY	Auswahl Speicherbereich	BYTE	ERRORID	Fehlercode	INT
STARTINDEX	Zeigt auf die zu beschreibende Speicherzelle	INT	ACTINDEX	Aktueller Speicherindex, auf dem im nächsten Zyklus gespeichert wird	DINT
VALUE	Zu speichernder Wert	DINT			
ERRORID	Erläuterung				
0	Kein Fehler				
1A00h	Wertebereich STARTINE	EX wurd	e überschritten		
1A01h	Wertebereich MEMORY	wurde üb	erschritten		

i Information

Beachte! Der Speicherbereich in der Einstellung MEMORY = 0 wird auch von der Scope Funktion genutzt. Ein Verwenden der Scope Funktion überschreibt die gespeicherten Werte!


3.3.6 Visualisierung ParameterBox

In der ParameterBox kann der komplette Displayinhalt für eigene Informationsdarstellungen benutzt werden. Dazu muss die ParameterBox in den Visualisierungsmode geschaltet werden. Dies ist ab der Firmwareversion V4.3 der ParameterBox (Parameter P1308) möglich und geschieht wie folgt:

- Im Menüpunkt "Anzeige" den Parameter P1003 auf "PLC-Anzeige" einstellen
- Über die rechte oder linke Pfeiltaste auf die Betriebswertanzeige wechseln
- · PLC Anzeige ist jetzt in der P-Box aktiv und bleibt dies auch dauerhaft

Im Visualisierungsmode der P-Box kann über die zwei nachfolgend erläuterten FB der Displayinhalt

beschrieben werden. Vorab muss jedoch im PLC Konfigurationsdialog (Schaltfläche), der Punkt "Parameterbox Funktionsbausteine zulassen" aktiviert sein. Über den Prozesswert "Parameterbox_key_state" kann zusätzlich der Tastaturzustand der Box abgefragt werden. Damit können Eingaben in das PLC Programm realisiert werden. Der nachfolgenden Abbildung kann der Displayaufbau und die Position der auszulesenden Tasten für die ParameterBox entnommen werden.

1	Erstes Zeichen	$(0,0 \rightarrow \text{Zeile} = 0 \text{ , Spalte} = 0)$
2	Letztes Zeichen	(3,19 → Zeile = 3 , Spalte = 19)

3.3.6.1 Überblick Visualisierung

Funktionsbaustein	Erläuterung
FB_STRINGToPBox	Kopiert einen String in die P-Box
FB_DINTToPBox	Kopiert einen DINT Wert zur P-Box

3.3.6.2 FB_DINTToPBOX

	SK 5xxP	SK 54xE	SK 53xE SK 52xE	On/On+	SK 2xxE	SK 2xxE-FDS		SK 155E-FDS SK 175E-FDS
Verfügbarkeit	Х	X	Χ	Х	Χ	X	Χ	Х

Dieser Funktionsbaustein konvertiert einen DINT Wert in einen ASCII String und kopiert diesen in die ParameterBox. Die Ausgabe kann im dezimalen, binären oder hexadezimalen Format erfolgen, die Selektion wird über MODE durchgeführt. Über ROW und COLUMN wird die Startposition des Strings im P-Box Display gesetzt. Der Parameter LENGTH übergibt die Länge des Strings in Zeichen. Im MODE Dezimal positioniert der Parameter POINT ein Komma in die darzustellende Zahl. In POINT wird angegeben wie viele Zeichen rechts vom Komma stehen. Bei der Einstellung 0 ist die Funktion POINT ausgeschaltet. Sollte die Zahl mehr Zeichen enthalten als es die Länge zulässt und ist außerdem kein Komma gesetzt, so wird der Überlauf durch das Zeichen "#" angezeigt. Befindet sich ein Komma in der Zahl, so können bei Bedarf alle Zahlen hinter dem Komma entfallen. Im MODE hexadezimal und binär werden immer die niederwertigsten Bits dargestellt, wenn die eingestellte Länge zu kurz ist. Solange ENABLE auf 1 gesetzt ist, werden alle Änderungen an den Eingängen sofort übernommen. Geht VALID auf 1, dann ist der String korrekt übertragen worden. Im Fehlerfall wird ERROR auf 1 gesetzt. VALID ist in diesem Fall 0. In der ERRORID ist dann der entsprechende Fehlercode gültig. Bei einer negativen Flanke an ENABLE werden VALID, ERROR und ERRORID zurückgesetzt.

Beispiele:

Einstellung	Darzustellende Zahl	P-Box Anzeige		
Length = 5	40045	40045		
Point = 0	12345	12345		
Length = 5	400.45			
Point = 0	1-12345	#####		
Length = 10	400450700	400,450,700		
Point = 3	123456789	123456,789		
Length = 8	100 150 700	1001507		
Point = 3	123456789	123456,7		

VAR_INPUT			VAR_OUTPU	Т	
Eingang	Erläuterung	Тур	Ausgang	Erläuterung	Тур
ENABLE	Übergabe des Strings	BOOL	VALID	String übergeben	BOOL
MODE	Darstellungsformat 0 = Dezimal 1 = Binäre 2 = Hexadezimal Wertebereich = 0 bis 2		ERROR	Fehler im FB	BOOL
ROW	Zeile des Display Wertebereich = 0 bis 3		ERRORID	Fehlercode	INT
COLUMN	Spalte des Display Wertebereich = 0 bis 19	BYTE			
POINT	Position des Komma Wertebereich = 0 bis 10 0 = Funktion ist ausgeschaltet	BYTE			
LENGTH	Ausgabelänge Wertebereich = 1 bis 11	BYTE			
VALUE	Auszugebende Zahl	DINT			
ERRORID	Erläuterung				
0	Kein Fehler				
1500h	String überschreibt den S	Speicherb	ereich des P-B	ox Arrays	
1501h	beim Eingang LINE wurd	e der We	rtebereich über	rschritten	
1502h	beim Eingang ROW wurd	der We	ertebereich übe	rschritten	
1504h	beim Eingang POINT wu	rde der W	Vertebereich üb	perschritten	
1505h	beim Eingang LENGTH v	vurde der	Wertebereich	überschritten	
1506h	beim Eingang MODE wui	rde der W	/ertebereich üb	erschritten	

Beispiel in ST:

```
(* Initialisierung *)
if FirstTime then
  StringToPBox.ROW := 1;
  StringToPBox.Column := 16;
  FirstTime := False;
end_if;
(* Aktuelle Position abfragen *)
ActPos(Enable := TRUE);
if ActPos.Valid then
  (* Position in der PBox anzeigen (PBox P1003 = PLC Anzeige ) *)
  DintToPBox.Value := ActPos.Position;
  DintToPBox.Column := 9;
  DintToPBox.LENGTH := 10;
  DintToPBox(Enable := True);
end_if;
(* Gerät über DIG1 ein oder ausschalten *)
Power(Enable := _5_State_digital_input.0); if OldState <> Power.Status then
  OldState := Power.Status;
  (* Ist das Gerät eingeschaltet? *)
  if Power.Status then
    StringToPBox(Enable := False, Text := TextOn);
    StringToPBox(Enable := False, Text := TextOff);
  end if;
  StringToPBox(Enable := TRUE);
  StringToPBox;
end if;
```


3.3.6.3 FB_STRINGToPBOX

	SK 5xxP	SK 54xE	SK 53xE SK 52xE	On/On+	SK 2xxE	SK 2xxE-FDS		SK 155E-FDS SK 175E-FDS
Verfügbarkeit	Χ	Χ	Χ	Χ	Χ	X	Χ	X

Dieser Funktionsbaustein kopiert einen String (Zeichenkette) in das P-Box Speicherarray. Über ROW und COLUMN wird die Startposition des Strings im P-Box Display gesetzt. Der Parameter TEXT übergibt den gewünschten String an den Funktionsbaustein, der Stringname kann aus der Variablentabelle entnommen werden. Solange ENABLE auf 1 ist, werden alle Änderungen an den Eingängen sofort übernommen. Beim gesetzten CLEAR Eingang wird der gesamte Display Inhalt mit Leerzeichen überschrieben, bevor der selektierte String geschrieben wird. Geht VALID auf 1, dann ist der String korrekt übertragen worden. Im Fehlerfall wird ERROR auf 1 gesetzt. VALID ist in diesem Fall 0. In der ERRORID ist dann der entsprechende Fehlercode gültig. Bei einer negativen Flanke an ENABLE werden VALID, ERROR und ERRORID zurückgesetzt.

VAR_INPU	г		VAR_OUTPUT			
Eingang	Erläuterung	Тур	Ausgang	Erläuterung	Тур	
ENABLE	Übergabe des String	BOOL	VALID	String übergeben	BOOL	
CLEAR	Display löschen	BOOL	ERROR	Fehler im FB	BOOL	
ROW	Zeile des Display Wertebereich = 0 bis 3	BYTE	ERRORID	Fehlercode	INT	
COLUMN	Spalte des Display Wertebereich = 0 bis 19	BYTE				
TEXT	anzuzeigender Text	STRING				
ERRORID	Erläuterung					
0	Kein Fehler					
1500h	String überschreibt den Spo	eicherbereic	h des P-Box A	rrays		
1501h	beim Eingang ROW wurde	der Werteb	ereich übersch	ritten		
1502h	beim Eingang COLUMN wu	ırde der We	rtebereich übe	rschritten		
1503h	Die gewählte String Numme	er existiert r	icht			
1506h	In der PLC Konfiguration is aktiviert.	t die Option	"Parameterbox	k Funktionsbausteine zulassen" nich	t	

Beispiel in ST:

```
(* Initialisierung *)
if FirstTime then
  StringToPBox.ROW := 1;
  StringToPBox.Column := 16;
  FirstTime := False;
end_if;
(* Aktuelle Position abfragen *)
ActPos(Enable := TRUE);
if ActPos.Valid then
  (* Position in der PBox anzeigen (PBox P1003 = PLC Anzeige ) *)
  DintToPBox.Value := ActPos.Position;
  DintToPBox.Column := 9;
  DintToPBox.LENGTH := 10;
  DintToPBox(Enable := True);
end_if;
(* Gerät über DIG1 ein oder ausschalten *)
Power(Enable := _5_State_digital_input.0); if OldState <> Power.Status then
  OldState := Power.Status;
  (* Ist das Gerät eingeschaltet? *)
  if Power.Status then
    StringToPBox(Enable := False, Text := TextOn);
    StringToPBox(Enable := False, Text := TextOff);
  end if;
  StringToPBox(Enable := TRUE);
  StringToPBox;
end if;
```


3.3.7 FB_Capture (Erfassen schneller Ereignisse)

	SK 5xxP	SK 54xE	SK 53xE SK 52xE	On/On+	SK 2xxE		SK 180E SK 190E	SK 155E-FDS SK 175E-FDS
Verfügbarkeit	Χ	Χ	Х	Х	Χ	X		

Die Zykluszeit der PLC beträgt 5ms, dieser Zyklus ist zur Erfassung sehr schneller externer Ereignisse mitunter zu groß. Über der FB Capture ist es möglich auf Flanken an den FU Eingängen bestimmte physikalische Größen zu erfassen. Die Überwachung der Eingänge erfolgt in einem 1ms Zyklus. Die so gespeicherten Werte können später von der PLC ausgelesen werden.

Bei einer positiven Flanke an **EXECUTE** werden alle Eingänge eingelesen und die Capture Funktion scharf geschaltet. Über den Eingang **INPUT** wird der zu überwachende FU Eingang selektiert. Über **EDGE** werden die Art der Flanke und das Verhalten des Bausteins ausgewählt.

- **EDGE** = 0 Mit der ersten positiven Flanke wird der selektierte Wert unter **OUTPUT1** gespeichert und **DONE1** auf 1 gesetzt. Die nächste positive Flanke speichert unter **OUTPUT2** und **DONE2** wird auf 1 gesetzt. Der FB wird dann deaktiviert.
- **EDGE** = 1 Verhalten wie unter **EDGE** = 0, mit dem Unterschied das die negative Flanke auslöst.
- **EDGE** = 2 Mit der ersten positiven Flanke wird der selektierte Wert unter **OUTPUT1** gespeichert und **DONE1** auf 1 gesetzt. Die nächste negative Flanke speichert unter **OUTPUT2** und **DONE2** wird auf 1 gesetzt. Der FB wird dann deaktiviert.
- **EDGE** = 3 Verhalten wie unter **EDGE** = 2, mit dem Unterschied das zuerst die negative und dann die positive Flanke auslöst.

Wird der Eingang **CONTINUOUS** auf 1 gesetzt, dann ist für **EDGE** nur noch die Einstellung 0 und 1 relevant. Der FB läuft kontinuierlich weiter und speichert das letzte auslösende Ereignis immer unter **OUTPUT1** ab. **DONE1** bleibt ab dem ersten Ereignis aktiv. **DONE2** und **OUTPUT2** werden nicht verwendet.

Der **BUSY** Ausgang bleibt solange aktiv bis beide Capture Ereignisse (**DONE1** und **DONE2**) eingetreten sind.

Die Funktion des Bausteins kann jederzeit durch eine negative Flanke an **EXECUTE** beendet werden. Alle Ausgänge behalten dabei ihre Werte. Mit einer positiven Flanke an **EXECUTE** werden zuerst alle Ausgänge gelöscht und dann die Funktion des Bausteins gestartet.

VAR_INPUT			VAR_OUTPUT				
Eingang	Erläuterung	Тур	Ausgang	Erläuterung	Тур		
EXECUTE	Ausführen	BOOL	DONE1	Wert in OUTPUT1 gültig	BOOL		
CONTINUOUS	Einmalige Ausführung o. Dauerbetrieb	BOOL	DONE2	Wert in OUTPUT2 gültig	BOOL		
INPUT	SK54xE Zu überwachender Eingang 0 = Eingang 1 7 = Eingang 8 SK52xE, SK53xE, SK2xxE, SK2xx-EFDS Zu überwachender Eingang 0 = Eingang 1 3 = Eingang 4	ВУТЕ	FB wartet noch auf Capture Ereignisse		BOOL		
EDGE	Auslösende Flanke	BYTE	ERROR	der FB hat einen Fehler	BOOL		
SOURCE	Zu speichernde Größe 0 = Position in Umdrehungen 1 = Istfrequenz 2 = Moment	ВҮТЕ	ERRORID	Fehlercode	INT		
			OUTPUT1	Wert für 1. Capture Ereignisses	DINT		
			OUTPUT2	Wert für 2. Capture Ereignisses	DINT		
ERRORID	Erläuterung						
0	Kein Fehler						
1900h	Wertebereich INPUT wur	de übers	chritten				
1901h	Wertebereich EDGE wur	de überso	chritten				
1902h	Wertebereich SOURCE	wurde übe	erschritten				
1903h	Es sind mehr als zwei In	stanzen a	aktiv				

Beispiel in ST:

```
Power(ENABLE := TRUE);
IF Power.STATUS THEN
  Move(EXECUTE := TRUE, POSITION := Pos, VELOCITY := 16#2000);
  (* Der Capture FB wartet am DIG1 auf ein High Signal. Wird das erkannt, speichert der FB die aktuelle Position. Mit Hilfe der Eigenschaft "OUTPUT1" kann der Wert abgefragt werden. *)
  Capture(EXECUTE := TRUE, INPUT := 0);

IF Capture.DONE1 THEN
   Pos := Capture.OUTPUT1;
   Move(EXECUTE := FALSE);
   END_IF;
END IF;
```


i Information

Von diesem FB können mehrere Instanzen im PLC Programm existieren. Aber es dürfen zur selben Zeit nur zwei Instanzen aktiv sein!

3.3.8 FB_DinCounter

	SK 5xxP	SK 54xE	SK 53xE SK 52xE	On/On+	SK 2xxE	SK 2xxE-FDS		SK 155E-FDS SK 175E-FDS
Verfügbarkeit	Χ	Х	Х	Х	Х	X	ab V1.1	

Dieser FB dient zum Zählen von Impulsen über die Digitaleingänge. Es werden alle Flanken (Low – High und High – Low) gezählt. Die minimale Impulsbreite ist 1 ms.

Der FB wird über ENABLE aktiviert. Mit der positiven Flanke werden die Eingänge PV, UD, DIN und MODE übernommen und alle Ausgänge gelöscht.

UD definiert die Zählrichtung

- 0 = größer Zählen
- 1 = kleiner Zählen

In PV kann ein Zählerwert eingetragen werden. Je nach setzen des MODE Eingangs wirkt sich dies verschieden aus.

MODE

- 0 = Überlauf, der Zähler wird als Dauerzähler betrieben. Er kann in positiver und negativer Richtung überlaufen. Beim Start der Funktion wird CV = PV gesetzt. In diesem Mode bleibt BUSY immer 1 und Q immer 0.
- 1 = ohne Überlauf
 - Vorwärtszählen à CV startet bei 0, BUSY = 1, und läuft bis CV=>PV. Dann geht BUSY auf 0 und Q auf 1. Der Zählvorgang stoppt.
 - Rückwärtszählen à CV startet mit PV und läuft bis CV<=0. Während dieser Zeit ist BUSY = 1 und geht auf 0 wenn das Zählende erreicht ist. Im Gegenzug geht Q auf 1.
 - Neustart des Zählers wird über einen erneute Flanke am ENABLE Eingang erreicht

DIN definiert den Messeingang. Die Anzahl der Eingänge hängt vom jeweiligen FU ab (max. 4).

- Eingang 1 = 0
- Eingang 2 = 1
- Eingang 3 = 2
- Eingang 4 = 3

VAR_INPUT			VAR_OUTP	UT	
Eingang	Erläuterung	Тур	Ausgang	Erläuterung	Тур
ENABLE	Freigabe	BOOL	Q	Zählung beendet	BOOL
UD	Zählrichtung 0 = größer Zählen 1 = kleiner Zählen	BOOL	BUSY	Zähler läuft	BOOL
PV	Zählerwert	INT	ERROR der FB hat einen Fehler		BOOL
MODE	Modus	BYTE	ERRORID	Fehlercode	INT
DIN	Messeingang	BYTE	cv	Zählerwert	INT
			CF	Zählfrequenz (Auflösung 0,1) 1)	INT
ERRORID	Erläuterung				
0	Kein Fehler				
0x1E00	Digitaler Eingang wird	bereits von	n anderen Zäh	ler verwendet	
0x1E01	Digitaler Eingang exist	tiert nicht			
0x1E02	Wertebereich MODE ü	überschritte	n		

¹⁾ Messbereich 0,1 Hz bis 1 kHz

3.3.9 FB_FunctionCurve

	SK 5xxP	SK 54xE	SK 53xE SK 52xE	On/On+	SK 2xxE	SK 2xxE-FDS		SK 155E-FDS SK 175E-FDS
Verfügbarkeit	Χ	Х	Х	Х	Х	X	Х	

Der Funktionsbaustein stellt eine Kennfeldsteuerung dar. Es können dem Funktionsblock definierte Punkte übergeben werden, durch die er eine Funktion emuliert. Der Ausgang verhält sich dann entsprechend des hinterlegten Kennfelds. Zwischen den einzelnen Stützpunkten wird linear interpoliert. Die Stützstellen werden mit X und Y-Werten definiert. Die X-Werte sind dabei immer vom Typ INT, die Y-Werte können alle entweder vom Typ INT oder DINT sein, je nach Größe der größten Stützstelle. Wird DINT verwendet verbraucht dies auch mehr Speicherplatz. Die Stützstellen werden im Variablenfenster in der Spalte "Init-Wert" eingetragen. Wird am Eingang ENABLE ein TRUE erkannt wurde, wird anhand des Eingangswerts INVALUE der entsprechende Ausgangswert OUTVALUE berechnet. VALID signalisiert mit einem TRUE, dass der Ausgangwert OUTVALUE gültig ist. Solange VALID FALSE ist, hat der Ausgang OUTVALUE den Wert 0. Überschreitet der Eingangswert INVALUE das obere oder untere Ende des Kennfeldes, bleibt der erste oder letzte Ausgangswert des Kennfeldes am Ausgang stehen, solange bis sich INVALUE wieder im Bereich des Kennfeldes befindet. Bei Über- oder Unterschreitung des Kennfeldes wird der entsprechende Ausgang MINLIMIT oder MAXLIMIT auf TRUE gesetzt. ERROR wird TRUE, wenn die Abszissenwerte (X-Werte) des Kennfeldes nicht fortlaufen größer werden, oder keine Tabelle initialisiert wird. Dabei wird der entsprechende Fehler auch über ERRORID ausgegeben und der Ausgangswert wird 0. Der Fehler wird zurückgesetzt, wenn **ENABLE** = FALSE wird.

VAR_INPUT			VAR_OUTPUT					
Eingang	Erläuterung	Тур	Ausgang Erläuterung		Тур			
ENABLE	Ausführen	BOOL	VALID	Ausgangswert ist gültig	BOOL			
INVALUE	Eingangswert (x)	INT	ERROR	Fehler im FB	BOOL			
			ERRORID	Fehlercode	INT			
			MAXLIMIT	Maximales Limit erreicht	BOOL			
			MINLIMIT	Minimales Limit erreicht	BOOL			
			OUTVALUE	Ausgangswert (y)	DINT			
ERRORID	Erläuterung				<u>, </u>			
0	Kein Fehler							
1400h	Abszissenwerte (X-Werte	Abszissenwerte (X-Werte) des Kennfeldes nicht immer steigend						
1401h	Kein Kennfeld initialisiert							

3.3.10 FB_PIDT1

	SK 5xxP	SK 54xE	SK 53xE SK 52xE	On/On+	SK 2xxE	SK 2xxE-FDS		SK 155E-FDS SK 175E-FDS
Verfügbarkeit	Х	Х	Х	Х	Х	X	Х	X

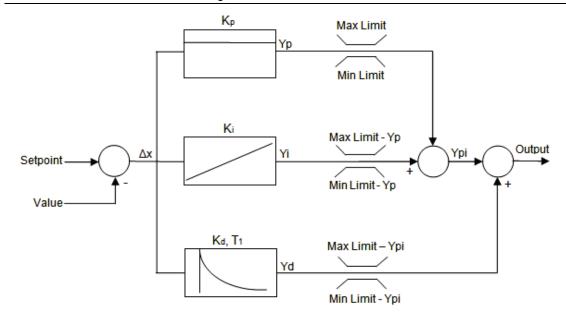
Der P-I-DT1 stellt einen frei parametrierbaren diskreten Regler dar. Werden einzelne Anteile nicht benötigt, sowie der P, der I oder der DT1 Anteil, wird dessen Parameter mit 0 beschrieben. Der T1 Anteil arbeitet nur mit dem D Anteil zusammen. Es lässt sich also kein PT1 Regler parametrieren. Auf Grund von interner Speicherbegrenzung sind die Regelungsparameter auf folgende Bereiche begrenzt:

Zulässiger W	Zulässiger Wertebereich für Regelungsparameter										
Parameter	rameter Wertebereich		resultierender Wertebereich								
P (Kp)	0 – 32767	1/100	0,00 – 327,67								
I (Ki)	0 – 10240	1/100	0,00 – 102,40								
D (Kd)	0 – 32767	1/1000	0,000 – 32,767								
T1 (ms)	0 – 32767	1/1000	0,000 – 32,767								
Max	-32768 – 32767										
Min	-32768 – 32767										

Wenn der Eingang **ENABLE** auf TRUE gesetzt wird, beginnt der Regler zu rechnen. Die Regelungsparameter werden nur bei der steigenden Flanke von **ENABLE** übernommen. Während **ENABLE** auf TRUE ist, bleibt ein Verändern der Reglungsparameter wirkungslos. Wird **ENABLE** auf FALSE gesetzt, bleibt der Ausgang auf dem letzten Wert stehen.

Das Ausgangsbit **VALID** wird gesetzt, solange sich der Ausgangswert Q innerhalb der Grenzen Min und Max bewegt und der Eingang **ENABLE** auf TRUE steht.

ERROR wird gesetzt, sobald ein Fehler aufgetreten ist. Das Bit **VALID** ist dann FALSE und die Fehlerursache ist über **ERRORID** (siehe Tabelle unten) zu erkennen.


Wird das Bit **RESET** auf TRUE gesetzt, werden der Integrator- und der Differenziatorinhalt auf 0 gesetzt. Ist der Eingang **ENABLE** auf FALSE, wird auch der Ausgang **OUTPUT** auf 0 gesetzt. Ist der Eingang **ENABLE** auf TRUE gesetzt, wirkt nur der P-Anteil auf den Ausgang **OUTPUT**.

Überschreitet der Ausgangswert **OUTPUT** die maximalen oder minimalen Ausgangswerte, wird das entsprechende Bit **MAXLIMIT** bzw. **MINLIMIT** gesetzt und das Bit **VALID** wird auf FALSE gesetzt.

Information

Kann das gesamte Programm nicht innerhalb von einem PLC Zyklus abgearbeitet werden, rechnet der Regler den Ausgangswert ein zweites Mal mit den alten Abtastwerten. Dadurch wird eine konstante Abtastrate erreicht. Aus diesem Grund ist es notwendig, dass der CAL Befehl für den PIDT1 Regler in jedem PLC Zyklus und nur am Ende des PLC Programms ausgeführt wird!

VAR_INPUT			VAR_OUTPU	JΤ	
Eingang	Erläuterung	Тур	Ausgang	Erläuterung	Тур
ENABLE	Ausführen	BOOL	VALID	Ausgangswert ist gültig	BOOL
RESET	Ausgangswerte zurücksetzen	BOOL	ERROR	Fehler im FB	BOOL
Р	P-Anteil (Kp)	INT	ERRORID	Fehlercode	INT
I	I-Anteil (Ki)	INT	MAXLIMIT	Maximales Limit erreicht	BOOL
D	D-Anteil (Kd)	INT	MINLIMIT	Minimales Limit erreicht	BOOL
T1	T1-Anteil in ms	INT	OUTPUT	Ausgangswert	INT
MAX	Maximaler Ausgangswert	INT			
MIN	Minimaler Ausgangswert	INT			
SETPOINT	Sollwert	INT			
VALUE	Istwert	INT			
ERRORID	Erläuterung				
0	Kein Fehler				
1600h	P-Anteil nicht im Wertebere	ich			
1601h	I-Anteil nicht im Werteberei	ch			
1602h	D-Anteil nicht im Wertebere	eich			
1603h	T1-Anteil nicht im Werteber	eich			

3.3.11 FB_ResetPostion

	SK 5xxP	SK 54xE	SK 53xE SK 52xE	On/On+	SK 2xxE	SK 2xxE-FDS		SK 155E-FDS SK 175E-FDS
Verfügbarkeit	Х	ab V2.3	ab V3.1	On+	ab V2.1	X	ab V1.2	

Bei einer Flanke auf den Eingang **EXECUTE**, wird die aktuelle Position (P601) auf den in Position eingetragenen Wert gesetzt. Ist im Parameter P609 ein Positionsoffset eingetragen, wird dieser Offset von der Position abgezogen.

Bei Absolutwertgebern kann die aktuelle Position nur auf 0 zurückgesetzt werden. Der Wert in Position wird nicht verwendet.

VAR_INPUT			VAR_OUTPUT			
Eingang	Erläuterung	Тур	Ausgang	Erläuterung	Тур	
EXECUTE	Ausführen	BOOL				
Position	Position	DINT				

3.3.12 FB_Weigh

	SK 5xxP	SK 54xE	SK 53xE SK 52xE	On/On+	SK 2xxE	SK 2xxE-FDS		SK 155E-FDS SK 175E-FDS
Verfügbarkeit	Х	ab V2.3	ab V3.1	Х	ab V2.1	X	ab V1.2	

Dieser Baustein dient zur Ermittlung des durchschnittlichen Drehmoments während einer Fahrt mit konstanter Drehzahl. Aus diesem Wert können dann z.B. physikalische Größen wie das bewegte Gewicht ermittelt werden.

Über eine positive Flanke am **EXECUTE** Eingang wird der FB gestartet. Mit der Flanke werden alle Eingänge am FB übernommen. Der FU verfährt mit der unter **SPEED** gesetzten Drehzahl. Nach Ablauf der unter **STARTTIME** gesetzten Zeit wird mit der Messung begonnen. Die Messdauer wird unter **MEASURETIME** definiert. Nach Ablauf der Messzeit stoppt der FU. Wenn der Eingang **REVERSE** = 1 ist, dann startet der Messvorgang erneut jedoch mit negierter Drehzahl. Ansonsten ist die Messung beendet, der Ausgang **DONE** geht auf 1 und in VALUE steht das Messergebnis.

Solange der Messvorgang läuft ist BUSY aktiv.

Die Skalierung des Messergebnis **VALUE** ist 1 = 0,01% vom Nenndrehmoment des Motors.

Der Aufruf eines anderen Motion FB stoppt die Messfunktion und der Ausgang ABORT geht auf 1.

Alle Ausgänge des FB werden mit einer neuen positiven Flanke an EXECUTE resetet.

VAR_INPUT			VAR_OUTP	TUT	
Eingang	Erläuterung	Тур	Ausgang	Erläuterung	Тур
EXECUTE	Ausführen	BOOL	DONE	Messung beendet	BOOL
REVERSE	Drehrichtungswechsel	BOOL	BUSY	Messung läuft	BOOL
STARTTIME	Zeit bis Messbeginn in ms	INT	ABORT	Messung abgebrochen	BOOL
MEASURETIME	Messzeit in ms	INT	ERROR	der FB hat einen Fehler	BOOL
SPEED	Messgeschwindigkeit in % (normiert auf die Maximalfrequenz, 16#4000 entspricht 100%)	INT	ERRORID	Fehlercode	INT
			VALUE	Messergebnis	INT
ERRORID	Erläuterung				
0	Kein Fehler				
0x1000	FU nicht eingeschaltet				
0x1101	Sollfrequenz nicht als Sollwe	rt parame	etriert (P553)		
0x1C00	Wertebereich STARTTIME v	/urde übe	erschritten		
0x1C01	Wertebereich MEASURETIN	1E wurde	überschritter	1	
0x1C02	Die Toleranz der Messwerte	zueinand	ler, ist größer	als 1/8	

Beispiel in ST:

```
(* Gerät freigeben *)
Power(Enable := TRUE);
(* Ist das Gerät freigegeben? *)
if Power.Status then
  (* Startezeit festlegen 2000 ms *)
 Weigh.STARTTIME := 2000;
  (* Messzeit festlegen 1000 ms *)
 Weigh.MEASURETIME := 1000;
 (* Geschwindigkeit festlegen 25% der Maximalgeschwindigkeit *)
 Weigh.SPEED := 16#1000;
end_if;
Weigh(EXECUTE := Power.Status);
(* Wurde das Wiegen beendet? *)
if Weigh.done then
 Value := Weigh.Value;
end_if;
```

i Information

Von diesem FB ist nur eine Instance im PLC Programm zulässig!

3.4 Operatoren

3.4.1 Arithmetische Operatoren

Information

Einzelne der folgenden Operatoren können auch weiterführende Befehle beinhalten. Diese sind in Klammern hinter den Operator zu setzen. Dabei ist zu beachten, dass hinter der eröffnenden Klammer ein Leerzeichen stehen muss. Die schließende Klammer ist auf eine separate Programmzeile zu setzen.

```
LD Var1
ADD( Var2
SUB Var3
```

3.4.1.1 ABS

	SK 5xxP	SK 54xE	SK 53xE SK 52xE	On/On+	SK 2xxE	SK 2xxE-FDS	SK 180E SK 190E	SK 155E-FDS SK 175E-FDS
Verfügbarkeit	Х	X	Х	Х	Х	X	Х	X

	BOOL	BYTE	INT	DINT
Datentyp			X	X

Bildet aus dem Akku den absoluten Betrag.

Beispiel in AWL:

```
LD -10 (* Lädt den Wert -10 *) ABS (* Akku = 10 *) ST Value1 (* Speichert den Wert 10 in Value1 ab *)
```

Beispiel in ST:

```
Value1 := ABS(-10); (* Das Ergebnis ist 10 *)
```


3.4.1.2 ADD und ADD(

	SK 5xxP	SK 54xE	SK 53xE SK 52xE	On/On+	SK 2xxE	K 2xxE SK 2xxE-FDS		SK 155E-FDS SK 175E-FDS
Verfügbarkeit	Χ	Х	Х	Х	Х	X	Х	X

	BOOL	BYTE	INT	DINT
Datentyp		Х	Х	Х

Addiert vorzeichenrichtig Variablen und Konstanten miteinander. Der erste Wert zur Addition befindet sich im Akku und der zweite wird mit dem ADD Befehl geladen oder er befindet sich innerhalb der Klammer. Es können auch mehrere Variablen oder Konstanten an den ADD Befehl angefügt werden. Bei der Klammer Addition wird der Akku mit dem Ergebnis des Klammerausdrucks addiert. Es sind bis zu 6 Klammerebenen möglich. Die zu addierenden Werte müssen demselben Variablentyp angehören.

Beispiel in AWL:

```
LD 10
ADD 204 (* Addition zweier Konstanten *)
ST Value
LD 170 (* Addition einer Konstanten und 2 Variablen. *)
ADD Var1, Var2 (* 170dez + Var1 + Var2 *)
ST Value
LD Var1
ADD( Var2
SUB Var3 (* Var1 + ( Var2 - Var3 ) *)
)
ST Value
```

Beispiel in ST:

```
Ergebnis := 10 + 30; (* Das Ergebnis ist 40 *)
Ergebnis := 10 + Var1 + Var2;
```


3.4.1.3 **DIV** und **DIV**(

	SK 5xxP	SK 54xE	SK 53xE SK 52xE	On/On+	SK 2xxE	SK 2xxE-FDS	SK 180E SK 190E	SK 155E-FDS SK 175E-FDS
Verfügbarkeit	Х	Х	X	Х	Χ	X	X	Х

	BOOL	BYTE	INT	DINT
Datentyp		Х	Х	Х

Dividiert den Akku durch den Operanden. Bei Divisionen durch null wird das maximal mögliche Ergebnis in den Akku eingetragen, z.B. bei einer Division mit INT Werten ist das der Wert 0x7FFF oder wenn der Divisor negativ ist dann ist es der Wert 0x8000. Bei der Klammer Division wird der Akku durch das Ergebnis des Klammerausdrucks dividiert. Es sind bis zu 6 Klammerebenen möglich. Die zu dividierenden Werte müssen demselben Variablentyp angehören.

Beispiel in AWL:

```
LD 10
DIV 3 (* Division zweier Konstanten *)
ST iValue (* Das Ergebnis ist 9 *)
LD 170 (* Division einer Konstanten und 2 Variablen. *)
DIV Var1, Var2 (* (170dez : Var1) : Var2 *)
ST Value
LD Var1 (* Dividiere Var1 durch den Inhalt der Klammer *)
DIV( Var2
SUB Var3
) (* Var1 : ( Var2 - Var3 ) *)
ST Value
```

Beispiel in ST:

```
Ergebnis := 30 / 10; (* Das Ergebnis ist 3 *)
Ergebnis := 30 / Var1 / Var2;
```

3.4.1.4 LIMIT

	SK 5xxP	SK 54xE	SK 53xE SK 52xE	On/On+	SK 2xxE	SK 2xxE-FDS	SK 180E SK 190E	SK 155E-FDS SK 175E-FDS
Verfügbarkeit	Х	X	Χ	Χ	Χ	X	Χ	X

	BOOL	BYTE	INT	DINT
Datentyp		Х	Х	Х

Der Befehl begrenzt den im Akku stehenden Wert auf die übergebenen min. und max. Werte. Werte. Bei Überschreitung wird im Akku der max. Wert eingetragen und bei Unterschreitung der min. Wert. Liegt der Wert zwischen den Limits, so erfolgt keine Beeinflussung.

Beispiel in AWL:

```
LD 10 (* Lädt den Wert 10 in den Akku *)
LIMIT 20, 30 (* Der Wert wird mit den Grenzen 20 und 30 verglichen. *)
(* Der Wert im Akku ist kleiner, der Akku wird mit 20 überschrieben*)
ST iValue (* Speichert den Wert 20 in Value1 ab *)
```

Beispiel in ST:

```
Ergebnis := Limit(10, 20, 30); (* Das Ergebnis ist 20 *)
```


3.4.1.5 MAX

	SK 5xxP	SK 54xE	SK 53xE SK 52xE	On/On+	SK 2xxE	SK 2xxE-FDS	SK 180E SK 190E	SK 155E-FDS SK 175E-FDS
Verfügbarkeit	Χ	Х	Х	Χ	Χ	X	Χ	X

	BOOL	BYTE	INT	DINT
Datentyp		X	X	Х

Dieser Befehl ermittelt den maximalen Wert von zwei Variablen oder Konstanten. Dazu wird der aktuelle Akku Inhalt mit dem im MAX Befehl übergebenen Wert verglichen. Der größere von beiden Werten befindet sich nach dem Befehl im Akku. Beide Werte müssen demselben Variablentyp angehören.

Beispiel in AWL:

```
LD 100 (* Lade 100 in den Akku *) MAX 200 (* Vergleiche mit dem Wert 200 *) ST iValue (* Speichere 200 in Value2 (weil größter Wert) *)
```

Beispiel in ST:

```
Ergebnis := Max(100, 200); (* Das Ergebnis ist 200 *)
```

3.4.1.6 MIN

	SK 5xxP	SK 54xE	SK 53xE SK 52xE	On/On+	SK 2xxE	SK 2xxE-FDS	SK 180E SK 190E	SK 155E-FDS SK 175E-FDS
Verfügbark	eit X	X	X	X	X	X	X	Х

	BOOL	BYTE	INT	DINT
Datentyp		Х	Х	Х

Dieser Befehl ermittelt den minimalen Wert von zwei Variablen oder Konstanten. Dazu wird der aktuelle Akku Inhalt dem im MIN Befehl übergebenen Wert verglichen. Der kleinere von beiden Werten befindet sich nach dem Befehl im Akku. Beide Werte müssen demselben Variablentyp angehören.

Beispiel in AWL:

```
LD 100 (* Lade 100 in den Akku *)
MIN 200 (* Vergleiche mit dem Wert 200 *)
ST Value2 (* Speichere 100 in Value2 (weil kleinerer Wert) *)
```

Beispiel in ST:

```
Ergebnis := Min(100, 200); (* Speichere 100 in Value2 (weil kleinerer Wert) *)
```


3.4.1.7 **MOD** und **MOD**(

	SK 5xxP	SK 54xE	SK 53xE SK 52xE	On/On+	SK 2xxE	SK 2xxE-FDS	SK 180E SK 190E	SK 155E-FDS SK 175E-FDS
Verfügbarkeit	Х	Х	Χ	Х	Х	X	X	Х

	BOOL	BYTE	INT	DINT
Datentyp		Х	Х	Х

Der Akku wird durch eine oder mehrere Variablen oder Konstanten dividiert, der Rest der Division steht als Ergebnis im Akku. Bei der Klammer Modulo wird der Akku durch das Ergebnis des Klammerausdrucks dividiert und daraus der Modulo gebildet. Es sind bis zu 6 Klammerebenen möglich.

Beispiel in AWL:

```
LD 25 (* Lade den Dividend *)
MOD 20 (* Division 25/20 à Modulo = 5 *)
ST Varl (* Speicher Ergebnis 5 in Varl *)
LD 25 (* Lade den Dividend *)
MOD( Varl (* Ergebnis = 25/(Varl + 10) à Modulo in den Akku *)
ADD 10
)
ST Var3 (* Speicher Ergebnis 10 in Var3 *)
```

Beispiel in ST:

```
Ergebnis := 25 MOD 20; (* Speicher Ergebnis 5 in Varl *)
Ergebnis := 25 MOD (Varl + 10); (* Ergebnis = 25/(Varl + 10) à Modulo in den Akku *)
```

3.4.1.8 **MUL und MUL(**

	SK 5xxP	SK 54xE	SK 53xE SK 52xE	On/On+	SK 2xxE	SK 2xxE-FDS	SK 180E SK 190E	SK 155E-FDS SK 175E-FDS
Verfügbarkeit	Х	Х	Х	Х	Х	X	Х	Х

	BOOL	BYTE	INT	DINT
Datentyp		Х	X	Х

Multiplikation des Akkus mit einer oder mehreren Variablen oder Konstanten. Bei der Klammer Multiplikation wird der Akku mit dem Ergebnis des Klammerausdrucks multipliziert. Es sind bis zu 6 Klammerebenen möglich. Beide Werte müssen demselben Variablentyp angehören.

Beispiel in AWL:

```
LD 25 (* Lade den Multiplikator *)
MUL Var1, Var2 (* 25 * Var1 * Var2 *)
ST Var2 (* Speicher Ergebnis *)
LD 25 (* Lade den Multiplikator *)
MUL( Var1 (* Ergebnis = 25*(Var1 + Var2) *)
ADD Var2
ST Var3 (* Speicher Ergebnis als Variable Var3 *)
```

Beispiel in ST:

```
Ergebnis := 25 * Var1 * Var2;
Ergebnis := 25 * (Var1 + Var2);
```


3.4.1.9 MUX

	SK 5xxP	SK 54xE	SK 53xE SK 52xE	On/On+	SK 2xxE	SK 2xxE-FDS	SK 180E SK 190E	SK 155E-FDS SK 175E-FDS
Verfügbarkeit	Χ	Х	Χ	Χ	Χ	X	Χ	X

	BOOL	BYTE	INT	DINT
Datentyp		X	X	Х

Über einen Index, der sich vor dem Befehl im Akku befindet, können verschiedene Konstanten oder Variablen selektiert werden. Der <u>erste Wert</u> wird über den <u>Index 0</u> angesprochen. Der ausgewählte Wert wird in den Akku geladen. Die Anzahl der Werte ist nur durch den Programmspeicher limitiert.

Beispiel in AWL:

```
LD 1 (* Wähle das gewünschte Element aus *) MUX 10,20,30,40,Value1 (* MUX Befehl mit 4 Konstanten und einer Variable *) ST Value (* Speichere Ergebnis = 20 *)
```

Beispiel in ST:

```
Ergebnis := Mux(1, 10, 20, 30, 40, Value1) (* Speichere Ergebnis = 20 *)
```

3.4.1.10 SUB und SUB(

	SK 5xxP	SK 54xE	SK 53xE SK 52xE	On/On+	SK 2xxE	SK 2xxE-FDS		SK 155E-FDS SK 175E-FDS
Verfügbarkeit	Х	Х	X	Х	Х	X	Х	X

	BOOL	BYTE	INT	DINT
Datentyp		Х	Χ	Χ

Subtrahiert den Akku mit einer oder mehreren Variablen oder Konstanten. Bei der Klammer Subtraktion wird der Akku mit dem Ergebnis des Klammerausdrucks subtrahiert. Es sind bis zu 6 Klammerebenen möglich. Die zu subtrahierenden Werte müssen demselben Variablentyp angehören.

Beispiel in AWL:

```
LD 10
SUB Var1 (* Ergebnis = 10 - Var1 *)
ST Ergebnis
LD 20
SUB Var1, Var2, 30 (* Ergebnis = 20 - Var1 - Var12 - 30 *)
ST Ergebnis
LD 20
SUB(6 (* Subtrahiere 20 mit den Inhalt der Klammer *)
AND 2
) (* Ergebnis = 20 - (6 AND 2) *)
ST Ergebnis (* Ergebnis = 18 *)
```

Beispiel in ST:

```
Ergebnis := 10 - Value1;
```


3.4.2 Erweiterte mathematische Operatoren

i Information

Die hier aufgeführten Operatoren sind sehr rechenintensiv. Es kann zu deutlich längeren Laufzeiten des PLC Programmes kommen.

3.4.2.1 COS, ACOS, SIN, ASIN, TAN, ATAN

	SK 5xxP	SK 54xE	SK 53xE SK 52xE	On/On+	SK 2xxE	SK 2xxE-FDS	SK 180E SK 190E	SK 155E-FDS SK 175E-FDS
Verfügbarkeit	Х	Х	Х	Х	Χ	X		

	BOOL	BYTE	INT	DINT
Datentyp				X

Berechnung der jeweiligen mathematischen Funktion. Der zu berechnende Wert muss im Akku in Bogenminuten vorliegen. Die Skalierung entspricht 1 = 1000.

Umrechnung: Winkel in Bogenmaß = (Winkel in Grad * PI / 180) * 1000 z.B. ein Winkel von 90° wird wie folgt umgerechnet à 90° * 3.14 / 180) *1000 = 1571

$$AE = \sin\left(\frac{AE}{1000}\right) \cdot 1000 \qquad AE = \cos\left(\frac{AE}{1000}\right) \cdot 1000 \qquad AE = \tan\left(\frac{AE}{1000}\right) \cdot 1000$$

Beispiel in AWL:

```
LD 1234
SIN
ST Ergebnis (* Ergebnis = 943 *)
```

Beispiel in ST:

```
Ergebnis := COS(1234); (* Ergebnis = 330 *)
Ergebnis := ACOS(330); (* Ergebnis = 1234 *)
Ergebnis := SIN(1234); (* Ergebnis = 943 *)
Ergebnis := ASIN(943); (* Ergebnis = 1231 *)
Ergebnis := TAN(999); (* Ergebnis = 1553 *)
Ergebnis := ATAN(1553); (* Ergebnis = 998 *)
```


3.4.2.2 EXP

	SK 5xxP	SK 54xE	SK 53xE SK 52xE	On/On+	SK 2xxE	SK 2xxE-FDS	SK 180E SK 190E	SK 155E-FDS SK 175E-FDS
Verfügbarkeit	X	Х	Х	Х	Х	X		

	BOOL	BYTE	INT	DINT
Datentyp				Х

Bildet aus dem Akku die Exponentialfunktion zur Basis der Eulerschen Zahl (2,718). Es können 3 Nachkommastellen angegeben werden, d.h. eine 1,002 muss als 1002 eingegeben werden.

$$AE = e^{\left(\frac{AE}{1000}\right)} \cdot 1000$$

Beispiel in AWL:

```
LD 1000
EXP
ST Ergebnis (* Ergebnis = 2718 *)
```

Beispiel in ST:

```
Ergebnis := EXP(1000); (* Ergebnis = 2718 *)
```

3.4.2.3 LN

		SK 5xxP	SK 54xE	SK 53xE SK 52xE	On/On+	SK 2xxE	SK 2xxE-FDS	 SK 155E-FDS SK 175E-FDS
Verfü	gbarkeit	X	X	X	X	X	X	

	BOOL	BYTE	INT	DINT
Datentyp				Χ

Logarithmus zur Basis e (2,718). Es können 3 Nachkommastellen angegeben werden, d.h. eine 1,000 muss als 1000 eingegeben werden.

$$AE = \ln \left(\frac{AE}{1000} \right) \cdot 1000$$

Beispiel in AWL:

```
LD 1234
LN
ST Ergebnis
```

Beispiel in ST:

```
Ergebnis := LN(1234); (* Ergebnis = 210 *)
```


3.4.2.4 LOG

	SK 5xxP	SK 54xE	SK 53xE SK 52xE	On/On+	SK 2xxE	SK 2xxE-FDS	 SK 155E-FDS SK 175E-FDS
Verfügbarkeit	Х	Х	X	Х	Х	X	

	BOOL	BYTE	INT	DINT
Datentyp				Х

Bildet aus dem Akku den Logarithmus zur Basis 10. Es können 3 Nachkommastellen angegeben werden, d.h. eine 1,000 muss als 1000 eingegeben werden.

$$AE = log_{10} \left(\frac{AE}{1000} \right) \cdot 1000$$

Beispiel in AWL:

```
LD 1234
LOG
ST Ergebnis (* Ergebnis = 91 *)
```

Beispiel in ST:

```
Ergebnis := LOG(1234); (* Ergebnis = 91 *)
```

3.4.2.5 SQRT

	SK 5xxP	SK 54xE	SK 53xE SK 52xE	On/On+	SK 2xxE	SK 2xxE-FDS	SK 180E SK 190E	SK 155E-FDS SK 175E-FDS
Verfügbarkeit	Х	Х	Χ	Χ	Х	X		

	BOOL	BYTE	INT	DINT
Datentyp				Х

Bildet aus dem Akku die Quadratwurzel. Es können 3 Nachkommastellen angegeben werden, d.h. eine 1,000 muss als 1000 eingegeben werden.

$$AE = \sqrt{\left(\frac{AE}{1000}\right)} \cdot 1000$$

Beispiel in AWL:

```
LD 1234
SQRT
ST Ergebnis (* Ergebnis = 1110 *)
```

Beispiel in ST:

```
Ergebnis := SQRT(1234); (* Ergebnis = 1110 *)
```


3.4.3 Bit Operatoren

3.4.3.1 AND und AND(

	SK 5xxP	SK 54xE	SK 53xE SK 52xE	On/On+	SK 2xxE	SK 2xxE-FDS		SK 155E-FDS SK 175E-FDS
Verfügbarkeit	X	X	Χ	Х	Х	X	Χ	Х

	BOOL	BYTE	INT	DINT
Datentyp	Х	Χ	Х	Х

Bitweise UND Verknüpfung des AE/Akku mit einer oder zwei Variablen oder Konstanten. Bitweise UND(...) Verknüpfung mit dem AE/Akku und dem AE/Akku welches zuvor in der Klammer gebildet wurde. Es sind bis zu 6 Klammerebenen möglich. Alle Werte müssen demselben Variablentyp angehören.

Beispiel in AWL:

```
LD 170
AND 204 (* AND Verknüpfung zwischen 2 Konstanten *)
(* Akku = 136 (Siehe Beispiel unter der Tabelle) *)

LD 170 (* Verknüpfung zwischen einer Konstanten und 2 Variablen.*)
AND Var1, Var2 (* Akku = 170dez AND Var1 AND Var2 *)

LD Var1
AND ( Var2 (* AE/Akku = Var1 AND ( Var2 OR Var3 ) *)
OR Var3
)
```

Beispiel in ST:

```
Ergebnis := 170 AND 204; (* Ergebnis = 136dez *)
```

Var2	Var1	Ergebnis
0	0	0
0	1	0
1	0	0
1	1	1

Beispiel: 170dez (1010 1010bin) AND 204dez (1100 1100bin) = (1000 1000bin) 136dez

3.4.3.2 ANDN und ANDN(

	SK 5xxP	SK 54xE	SK 53xE SK 52xE	On/On+	SK 2xxE	SK 2xxE-FDS		SK 155E-FDS SK 175E-FDS
Verfügbarkeit	Χ	Х	Х	Х	Χ	X	Х	Х

	BOOL	BYTE	INT	DINT
Datentyp	Х	Х	Х	Χ

Bitweise UND Verknüpfung des AE/Akkus mit einem negierten Operanden. Bitweise UND (...) Verknüpfung mit dem AE/Akku und dem negierten Ergebnis der Klammer. Es sind bis zu 6 Klammerebenen möglich. Die zu verknüpfenden Werte müssen demselben Variablentyp angehören.

Beispiel in AWL:

```
LD 2#0000_1111
ANDN 2#0011_1010 (* ANDN Verknüpfung zwischen 2 Konstanten *)
(* Akku = 2#1111_0101 *)

LD 170 (* Verknüpfung zwischen einer Konstanten und 2 Variablen. *)
ANDN Var1, Var2 (* Akku = 170d ANDN Var1 ANDN Var2 *)

LD Var1
ANDN ( Var2 (* AE/Akku = Var1 ANDN ( Var2 OR Var3 ) *)
OR Var3
)
```

Var2	Var1	Ergebnis
0	0	1
0	1	1
1	0	1
1	1	0

Beispiel: 170dez (1010 1010bin) AND 204dez (1100 1100bin) = (1000 1000bin) 136dez

3.4.3.3 NOT

	SK 5xxP	SK 54xE	SK 53xE SK 52xE	On/On+	SK 2xxE	SK 2xxE-FDS	SK 180E SK 190E	SK 155E-FDS SK 175E-FDS
Verfügbarkeit	Χ	Х	Χ	Χ	Χ	X	Χ	X

	BOOL	BYTE	INT	DINT
Datentyp	Х	Х	X	Х

Bitweise Negation des Akkus.

Beispiel in AWL:

```
LD BYTE#10 (* Lade In den AKKU den Wert 10dez im Format Byte *)
NOT (* Der Wert wird auf Bit - Ebene aufgelöst (0000 1010), *)
(* bitweise negiert (1111 0101) und wieder in einen Dezimalwert *)
(* gewandelt, Ergebnis = 245dez *)
ST Var3 (* Speicher Ergebnis als Variable Var3 *)
```

Beispiel in ST:

```
Ergebnis := not BYTE#10; (* Ergebnis = 245dez *)
```


3.4.3.4 OR und OR(

	SK 5xxP	SK 54xE	SK 53xE SK 52xE	On/On+	SK 2xxE	SK 2xxE-FDS		SK 155E-FDS SK 175E-FDS
Verfügbarke	it X	Х	X	X	X	X	Χ	X

	BOOL	BYTE	INT	DINT	
Datentyp	Х	Х	Х	Х	

Bitweise ODER Verknüpfung des AE/Akku mit einer oder zwei Variablen oder Konstanten. Bitweise ODER(...) Verknüpfung mit dem AE/Akku und dem AE/Akku welches zuvor in der Klammer gebildet wurde. Es sind bis zu 6 Klammerebenen möglich. Alle Werte müssen demselben Variablentyp angehören.

Beispiel in AWL:

```
LD 170
OR 204 (* OR Verknüpfung zwischen 2 Konstanten *)

LD 170 (* Verknüpfung zwischen einer Konstanten und 2 Variablen. *)
OR Var1, Var2 (* Akku = 170d OR Var1OR Var2 *)

LD Var1
OR ( Var2 (* AE/Akku = Var1 OR ( Var2 AND Var3 ) *)
AND Var3
)
```

Beispiel in ST:

```
Ergebnis := 170 or 204; (* Ergebnis = 238 *)
```

Var2	Var1	Ergebnis
0	0	0
0	1	1
1	0	1
1	1	1

3.4.3.5 **ORN undORN(**

	SK 5xxP	SK 54xE	SK 53xE SK 52xE	On/On+	SK 2xxE	SK 2xxE-FDS	SK 180E SK 190E	SK 155E-FDS SK 175E-FDS
Verfügbarkeit	Χ	Х	Χ	Χ	Χ	X	Χ	X

	BOOL	BYTE	INT	DINT
Datentyp	Х	Х	Х	Х

Bitweise ODER Verknüpfung des AE/Akkus mit einem negierten Operanden. Bitweise ODER (...) Verknüpfung mit dem AE/Akku und dem negierten Ergebnis der Klammer. Es sind bis zu 6 Klammerebenen möglich. Die zu verknüpfenden Werte müssen demselben Variablentyp angehören.

Beispiel in AWL:

```
LD 2#0000_1111
ORN 2#0011_1010 (* ORN Verknüpfung zwischen 2 Konstanten *)
(* Akku = 2#1100_0000 *)

LD 170 (* Verknüpfung zwischen einer Konstanten und 2 Variablen. *)
ORN Var1, Var2 (* Akku = 170d ORN Var1 ORN Var2 *)

LD Var1
ORN ( Var2 (* AE/Akku = Var1 ORN ( Var2 OR Var3 ) *)
OR Var3
)
```

Beispiel in ST:

```
Ergebnis := 2#0000 1111 ORN 2#0011 1010; (* Ergebnis = 2#1100 0000 *)
```

Var2	Var1	Ergebnis
0	0	1
0	1	0
1	0	0
1	1	0

3.4.3.6 ROL

	SK 5xxP	SK 54xE	SK 53xE SK 52xE	On/On+	SK 2xxE	SK 2xxE-FDS	SK 180E SK 190E	SK 155E-FDS SK 175E-FDS
Verfügbarkeit	Х	Х	Х	Х	Χ	X	Х	Х

	BOOL	BYTE	INT	DINT
Datentyp		Х	Х	Х

Bitweise Linksrotation des Akkus. Dabei wird der Inhalt des Akkus um n mal nach links verschoben, wobei das links Bit wieder rechts reingeschoben wird.

Beispiel in AWL:

```
LD 175 (* Lädt den Wert 1010_1111*) ROL 2 (* Akku Inhalt wird 2 mal nach links rotiert *) ST Value1 (* Speichert den Wert 1011_1110 ab *)
```

Beispiel in ST:

```
Ergebnis := ROL(BYTE#175, 2); (* Ergebnis = 2#1011\_1110 *)
Ergebnis := ROL(INT#175, 2); (* Ergebnis = 16\#C02B *)
```

3.4.3.7 ROR

	SK 5xxP	SK 54xE	SK 53xE SK 52xE	On/On+	SK 2xxE	SK 2xxE-FDS	SK 180E SK 190E	SK 155E-FDS SK 175E-FDS
Verfügbarkeit	Х	Х	X	Х	Χ	X	Х	X

	BOOL	BYTE	INT	DINT
Datentyp		Х	Χ	Χ

Bitweise Rechtsrotation des Akkus. Dabei wird der Inhalt des Akkus um n mal nach rechts verschoben, wobei das rechte Bit wieder links reingeschoben wird.

Beispiel in AWL:

```
LD 175 (* Lädt den Wert 1010_1111*)
ROR 2 (* Akku Inhalt wird 2 mal nach rechts rotiert *)
ST Value1 (* Speichert den Wert 1110_1011 ab *)
```

Beispiel in ST:

```
Ergebnis := ROR(BYTE#175, 2); (* Ergebnis = 2#1110_1011 *)
```


3.4.3.8 S und R

	SK 5xxP	SK 54xE	SK 53xE SK 52xE	On/On+	SK 2xxE	SK 2xxE-FDS	SK 180E SK 190E	SK 155E-FDS SK 175E-FDS
Verfügbarkeit	Х	Х	Χ	Х	Χ	X	Х	Х

	BOOL	BYTE	INT	DINT
Datentyp	Χ			

Setzen und Rücksetzen einer booleschen Variable, wenn das vorherige Verknüpfungsergebnis (das AE) TRUE war.

Beispiel in AWL:

```
LD TRUE (* Lädt das AE mit TRUE *)
S Varl (* VARl wird TRUE gesetzt *)
R Varl (* VARl wird FALSE gestzt *)
```

Beispiel in ST:

```
Ergebnis := TRUE;
Ergebnis := FALSE;
```

3.4.3.9 SHL

	SK 5xxP	SK 54xE	SK 53xE	On/On+	SK 2xxE	SK 2xxE-FDS		SK 155E-FDS
			SK 52xE				SK 190E	SK 175E-FDS
Verfügbarkeit	Х	Χ	X	Х	X	X	Χ	X

	BOOL	BYTE	INT	DINT
Datentyp		Х	Х	Х

Bitweises Linksschieben des Akkus. Dabei wird der Inhalt des Akku um n mal nach links verschoben, die rausgeschobenen Bits sind verloren.

Beispiel in AWL:

```
LD 175 (* Lädt den Wert 1010_1111 *)
SHL 2 (* Akku Inhalt wird 2 mal nach links verschoben *)
ST Value1 (* Speichert den Wert 1011 1100 ab *)
```

Beispiel in ST:

```
Ergebnis := SHL(BYTE#175, 2); (* Ergebnis = 2#1011\_1100 *)
Ergebnis := SHL(INT#175, 2); (* Ergebnis = 16#2BC *)
```


3.4.3.10 SHR

	SK 5xxP	SK 54xE	SK 53xE SK 52xE	On/On+	SK 2xxE	SK 2xxE-FDS		SK 155E-FDS SK 175E-FDS
Verfügbarkeit	Χ	Х	Х	Х	Χ	X	Х	X

	BOOL	BYTE	INT	DINT
Datentyp		Χ	Х	X

Bitweises Rechtsschieben des Akkus. Dabei wird der Inhalt des Akkus um n mal nach rechts verschoben, die rausgeschobenen Bits sind verloren.

Beispiel in AWL:

```
LD 175 (* Lädt den Wert 1010_1111 *)
SHR 2 (* Akku Inhalt wird 2 mal nach rechts verschoben *)
ST Valuel (* Speichert den Wert 0010_1011 ab *)
```

Beispiel in ST:

```
Ergebnis := SHR(BYTE#175, 2); (* Ergebnis = 2#0010_1011 *)
```


3.4.3.11 XOR und XOR(

	SK 5xxP	SK 54xE	SK 53xE SK 52xE	On/On+	SK 2xxE	SK 2xxE-FDS	SK 180E SK 190E	SK 155E-FDS SK 175E-FDS
Verfügbarkeit	Х	Х	Χ	Χ	Χ	X	Χ	X

	BOOL	BYTE	INT	DINT
Datentyp	Х			

Bitweises "Exklusiv Oder" Verknüpfung zwischen dem AE/Akku und ein bis zwei Variablen oder Konstanten. Der erste Wert befindet sich im AE/Akku der zweite wird mit dem Befehl geladen oder er befindet sich innerhalb der Klammer. Die zu verknüpfenden Werte müssen demselben Variablentyp angehören.

Beispiel in AWL:

Beispiel in ST:

```
Ergebnis := 2#0000 1111 XOR 2#0011 1010; (* Ergebnis = 2#0011 0101 *)
```

Var2	Var1	Ergebnis
0	0	0
0	1	1
1	0	1
1	1	0

3.4.3.12 XORN und XORN(

	SK 5xxP	SK 54xE	SK 53xE SK 52xE	On/On+	SK 2xxE	SK 2xxE-FDS	SK 180E SK 190E	SK 155E-FDS SK 175E-FDS
Verfügbarkeit	Х	Х	Χ	Х	Х	X	Х	Х

	BOOL	BYTE	INT	DINT
Datentyp	Х			

Bitweise Exclusiv ODER Verknüpfung des AE/Akkus mit einem negierten Operanden. Bitweise Exclusiv ODER (...) Verknüpfung mit dem AE/Akku und dem negierten Ergebnis der Klammer. Es sind bis zu 6 Klammerebenen möglich. Die zu verknüpfenden Werte müssen demselben Variablentyp angehören.

Beispiel in AWL:

Beispiel in ST:

```
Ergebnis := 2#0000 1111 XORN 2#0011 1010; (* Ergebnis = 2#1100 1010 *)
```

Var2	Var1	Ergebnis
0	0	1
0	1	0
1	0	0
1	1	1

3.4.4 Lade- und Speicheroperatoren

3.4.4.1 LD

	SK 5xxP	SK 54xE	SK 53xE SK 52xE	On/On+	SK 2xxE	SK 2xxE-FDS	SK 180E SK 190E	SK 155E-FDS SK 175E-FDS
Verfügbarkeit	Х	Х	Х	Χ	Χ	X	Х	X

	BOOL	BYTE	INT	DINT
Datentyp	Х	Х	Х	Х

Lädt eine Konstante oder eine Variable in den AE bzw. in den Akku.

Beispiel in AWL:

```
LD 10 (* Lädt die 10 als BYTE *) LD -1000 (* Lädt die -1000 als INT *) LD Value1 (* Lädt die Variable Value1 *)
```

3.4.4.2 LDN

	SK 5xxP	SK 54xE	SK 53xE SK 52xE	On/On+	SK 2xxE	SK 2xxE-FDS	SK 180E SK 190E	SK 155E-FDS SK 175E-FDS
Verfügbarkeit	Х	Х	Х	Χ	Х	X	Х	Х

	BOOL	BYTE	INT	DINT
Datentyp	X			

Lädt eine boolesche Variablen negiert in den AE.

Beispiel in AWL:

```
LDN Value1 (* Value1 = TRUE à AE = FALSE *)
ST Value2 (* Speicher auf Value2 = FALSE *)
```


3.4.4.3 ST

	SK 5xxP	SK 54xE	SK 53xE SK 52xE	On/On+	SK 2xxE	SK 2xxE-FDS	SK 180E SK 190E	SK 155E-FDS SK 175E-FDS
Verfügbarkeit	Х	Х	Χ	Х	Х	X	Х	Х

	BOOL	BYTE	INT	DINT
Datentyp	Х	Х	X	Χ

Speichert den Inhalt des AE/Akku auf eine Variable ab. Die abzuspeichernde Variable muss zu dem vorher geladenen und verarbeiteten Datentyp passen.

Beispiel in AWL:

```
LD 100 (* Lädt den Wert 1010_1111 *)
ST Value1 (* Akku Inhalt 100 wird in Value1 abgespeichert *)
```

3.4.4.4 STN

	SK 5xxP	SK 54xE	SK 53xE SK 52xE	On/On+	SK 2xxE	SK 2xxE-FDS	SK 180E SK 190E	SK 155E-FDS SK 175E-FDS
Verfügbarkeit	Х	X	Х	Х	Х	X	Х	X

	BOOL	BYTE	INT	DINT
Datentyp	Х			

Speichert den Inhalt des AE auf eine Variable ab und negiert ihn. Die abzuspeichernde Variable muss zu dem vorher geladenen und verarbeiteten Datentyp passen.

Beispiel in AWL:

```
LD Value1 (* Value1 = TRUE à AE = TRUE *)
STN Value2 (* Speicher auf Value2 = FALSE *)
```


3.4.5 Vergleichs Operatoren

3.4.5.1 EQ

	SK 5xxP	SK 54xE	SK 53xE SK 52xE	On/On+	SK 2xxE	SK 2xxE-FDS	SK 180E SK 190E	SK 155E-FDS SK 175E-FDS
Verfügbarkeit	Х	Х	Χ	Χ	Х	X	Χ	Х

	BOOL	BYTE	INT	DINT
Datentyp		Х	Х	Х

Vergleicht den Inhalt vom Akku mit einer Variabel oder Konstanten. Sind die Werte gleich, dann wird das AE auf TRUE gesetzt.

Beispiel in AWL:

```
LD Value1 (* Value1 = 5 *)

EQ 10 (* AE = Ist 5 gleich 10 ? *)

JMPC NextStep (* AE = FALSE à Programm springt nicht *)

ADD 1

NextStep:

ST Value1
```

Beispiel in ST:

```
(* Ist Value = 10 *)
if Value = 10 then
  Value2 := 5;
end if;
```

3.4.5.2 GE

	SK 5xxP	SK 54xE	SK 53xE SK 52xE	On/On+	SK 2xxE	CK Swit EDC		SK 155E-FDS SK 175E-FDS
Verfügbarkeit	Х	Х	Х	Х	Х	X	Х	X

	BOOL	BYTE	INT	DINT
Datentyp		Х	Χ	Χ

Vergleicht den Inhalt vom Akku mit einer Variabel oder Konstanten. Ist der Wert im Akku größer oder gleich der Variabel oder Konstante, dann wird das AE auf TRUE gesetzt.

Beispiel in AWL:

```
LD Value1 (* Value1 = 5 *)

GE 10 (* Ist 5 größer oder gleich 10? *)

JMPC NextStep (* AE = FALSE à Programm springt nicht *)

ADD 1

NextStep:

ST Value1
```

Beispiel in ST:

```
(* Ist 5 größer oder gleich 10? *)
if Value >= 10 then
  Value := Value - 1
end if;
```


3.4.5.3 GT

	SK 5xxP	SK 54xE	SK 53xE SK 52xE	On/On+	SK 2xxE	SK 2xxE-FDS		SK 155E-FDS SK 175E-FDS
Verfügbarkeit	Х	Х	Х	Х	Χ	X	Х	X

	BOOL	BYTE	INT	DINT
Datentyp		Х	Х	Х

Vergleicht den Inhalt vom Akku mit einer Variabel oder Konstanten. Ist der Wert im Akku größer als die Variabel oder Konstante, dann wird das AE auf TRUE gesetzt.

Beispiel in AWL:

```
LD Value1(* Value1 = 12 *)

GT 8 (* Ist 12 größer als 8? *)

JMPC NextStep (* AE = TRUE - Programm springt *)

ADD 1

NextStep:

ST Value1
```

Beispiel in ST:

```
(* Ist 12 größer als 8? *)
if Value > 8 then
  Value := 0;
end_if;
```

3.4.5.4 LE

	SK 5xxP	SK 54xE	SK 53xE SK 52xE	On/On+	SK 2xxE	SK 2xxE-FDS		SK 155E-FDS SK 175E-FDS
Verfügbarkeit	Х	Χ	Χ	Χ	Х	X	Χ	Х

	BOOL	BYTE	INT	DINT
Datentyp		Χ	X	X

Vergleicht den Inhalt vom Akku mit einer Variabel oder Konstanten. Ist der Wert im Akku kleiner oder gleich der Variablen oder Konstante, dann wird das AE auf TRUE gesetzt.

Beispiel in AWL:

```
LD Value1 (* Value1 = 5 *)
LE 10 (* Ist 5 kleiner oder gleich 10? *)
JMPC NextStep:
ST Value1
```

Beispiel in ST:

```
(* Ist Value kleiner oder gleich 10?*)
if Value <= 10 then
  Value := 11;
end_if;</pre>
```


3.4.5.5 LT

	SK 5xxP	SK 54xE	SK 53xE SK 52xE	On/On+	SK 2xxE	SK 2xxE-FDS	SK 180E SK 190E	SK 155E-FDS SK 175E-FDS
Verfügbarkeit	Χ	Χ	Χ	Χ	Χ	X	Χ	X

	BOOL	BYTE	INT	DINT
Datentyp		X	Х	Х

Vergleicht den Inhalt vom Akku mit einer Variabel oder Konstanten. Ist der Wert im Akku kleiner als die Variablen oder Konstante, dann wird das AE auf TRUE gesetzt.

Beispiel in AWL:

```
LD Value1 (* Value1 = 12 *)
LT 8 (* Ist 12 kleiner 8 ? *)
JMPC NextStep (* AE = FALSE à Programm springt nicht *)
ADD 1
NextStep:
ST Value1
```

Beispiel in ST:

```
(* Ist Value kleiner als 0? *)
if Value < 0 then
  Value := 0;
end_if;</pre>
```

3.4.5.6 NE

	SK 5xxP	SK 54xE	SK 53xE SK 52xE	On/On+	SK 2xxE	SK 2xxE-FDS		SK 155E-FDS SK 175E-FDS
Verfügbarkeit	X	X	X	Χ	Χ	X	X	X

	BOOL	BYTE	INT	DINT
Datentyp		Х	X	Х

Vergleicht den Inhalt vom Akku mit einer Variabel oder Konstanten. Ist der Wert im Akku ungleich der Variablen oder Konstante, dann wird das AE auf TRUE gesetzt.

Beispiel in AWL:

```
LD Value1 (* Value1 = 5 *)
NE 10 (*Ist 5 ungleich 10 ?*)
JMPC NextStep (* AE = TRUE à Programm springt *)
ADD 1
NextStep:
ST Value1
```

Beispiel in ST:

```
if Value <> 5 then
Value := 5;
end_if;
```


3.5 Prozesswerte

Alle analogen und digitalen Ein- und Ausgänge bzw. Bussoll- und Istwert können durch die PLC gelesen und weiterverarbeitet bzw. durch die PLC gesetzt (wenn Ausgangswert) werden. Der Zugriff auf die einzelnen Werte erfolgt über die hier nachfolgend aufgeführten Prozesswerte. Für alle Ausgangswerte muss der Ausgang (z.B. Digitalausgänge oder PLC Sollwert) so programmiert werden, dass als Ereignisquelle die PLC vorgesehen ist. Alle Prozessdaten werden von der PLC bei jedem neuen zyklischen Durchlauf am Anfang vom Gerät eingelesen und erst am Ende des PLC Programms in das Gerät geschrieben! In den nachfolgenden Tabellen sind alle Werte dargestellt, auf welche die PLC – Funktion direkt zugreifen kann. Auf alle anderen Prozesswerte muss über die Funktionsblöcke MC_ReadParameter oder MC_WriteParameter zugegriffen werden.

3.5.1 Ein- und Ausgänge

Hier sind alle Prozesswerte zusammengefasst, die das I/O- Interface des Gerätes beschreiben.

Name	Funktion	Normierung	Тур	Zugriff	Gerät
_0_Set_digital_output	Setzen digitaler Ausgänge	Bit 0: Mfr1 Bit 1: Mfr2 Bit 2: DOUT 1 Bit 3: DOUT 2 Bit 4: DOUT 1 CU5-MLT Bit 5: DOUT 2 CU5-MLT Bit 6: DOUT 3 CU5-MLT Bit 7: DOUT 4 CU5-MLT Bit 8: dig. Fkt. AOUT Bit 9: frei Bit 10: BusIO Bit0 Bit 11: BusIO Bit1 Bit 12: BusIO Bit2 Bit 13: BusIO Bit3 Bit 14: BusIO Bit4 Bit 15: BusIO Bit5	UINT	R/W	SK 5xxP On/On+
_0_Set_digital_output	Setzen digitaler Ausgänge	Bit 0: Mfr1 Bit 1: Mfr2 Bit 2: DOUT1 Bit 3: DOUT2 Bit 4: dig. Fkt. AOUT Bit 5: DOUT3 (Din7) Bit 6: Statuswort Bit 10 Bit 7: Statuswort Bit 13 Bit 8: BusIO Bit0 Bit 9: BusIO Bit1 Bit 10: BusIO Bit2 Bit 11: BusIO Bit3 Bit 12: BusIO Bit4 Bit 13: BusIO Bit5 Bit 14: BusIO Bit6 Bit 15: BusIO Bit7	UINT	R/W	SK 54xE
_0_Set_digital_output	Setzen digitaler Ausgänge	Bit 0: Mfr1 Bit 1: Mfr2	UINT	R/W	SK 52xE SK 53xE

Name	Funktion	Normierung	Тур	Zugriff	Gerät
		Bit 2: DOUT1 Bit 3: DOUT2 Bit 4: dig. Fkt. AOUT Bit 5: frei Bit 6: Statuswort Bit 10 Bit 7: Statuswort Bit 13 Bit 8: BusIO Bit0 Bit 9: BusIO Bit1 Bit 10: BusIO Bit2 Bit 11: BusIO Bit3 Bit 12: BusIO Bit4 Bit 13: BusIO Bit5 Bit 14: BusIO Bit6 Bit 15: BusIO Bit7			
_0_Set_digital_output	Setzen digitaler Ausgänge	Bit 0: DOUT1 Bit 1: BusIO Bit0 Bit 2: BusIO Bit1 Bit 3: BusIO Bit2 Bit 4: BusIO Bit3 Bit 5: BusIO Bit4 Bit 6: BusIO Bit5 Bit 7: BusIO Bit6 Bit 8: BusIO Bit7 Bit 9: Bus PZD Bit 10 Bit 10: Bus PZD Bit 13 Bit 11: DOUT2	UINT	R/W	SK 2xxE SK 2xxE-FDS
_0_Set_digital_output	Setzen digitaler Ausgänge	Bit 0: DOUT1 Bit 1: DOUT2 Bit 2: BusIO Bit0 Bit 3: BusIO Bit1 Bit 4: BusIO Bit2 Bit 5: BusIO Bit3 Bit 6: BusIO Bit4 Bit 7: BusIO Bit5 Bit 8: BusIO Bit6 Bit 9: BusIO Bit7 Bit 10: Bus PZD Bit 10 Bit 11: Bus PZD Bit 13	UINT	R/W	SK 180E SK 190E
_0_Set_digital_output	Setzen digitaler Ausgänge	Bit 0: DOUT1 Bit 1: DOUT2 Bit 2: DOUT_BRAKE Bit 3: DOUT_BUS1 Bit 4: DOUT_BUS2	UINT	R/W	SK 155E-FDS SK 175E-FDS
_1_Set_analog_output	Setzen analoger Ausgang FU	10,0V = 100	ВУТЕ	R/W	SK 5xxP SK 54xE SK 53xE SK 52xE On/On+
_2_Set_external_	Setzen analoger	10,0V = 100	BYTE	R/W	SK 5xxP

Name	Funktion	Normierung	Тур	Zugriff	Gerät
analog_out1	Ausgang 1. IOE				SK 54xE SK 2xxE SK 2xxE-FDS SK 180E SK 190E On/On+
_3_Set_external_ analog_out2	Setzen analoger Ausgang 2. IOE	10,0V = 100	вуте	R/W	SK 5xxP SK 54xE SK 2xxE SK 2xxE-FDS SK 180E SK 190E On/On+
_4_State_digital_output	Zustand digitale Ausgänge	Bit 0: Mfr1 Bit 1: Mfr2 Bit 2: DOUT 1 Bit 3: DOUT 2 Bit 4: DOUT 1 CU5-MLT Bit 5: DOUT 2 CU5-MLT Bit 6: DOUT 3 CU5-MLT Bit 7: DOUT 4 CU5-MLT Bit 8: dig. Fkt. AOUT Bit 9: frei Bit 10: DOUT1 IOE1 Bit 11: DOUT2 IOE1 Bit 12: DOUT1 IOE2 Bit 13: DOUT2 IOE2 Bit 14: frei Bit 15: frei	INT	R	SK 5xxP On/On+
_4_State_digital_output	Zustand digitale Ausgänge	Bit 0: Mfr1 Bit 1: Mfr2 Bit 2: DOUT1 Bit 3: DOUT2 Bit 4: dig. Fkt. AOUT Bit 5: DOUT3 (Din7) Bit 6: Statuswort Bit 8 Bit 7: Statuswort Bit 9 Bit 8: BusIO Bit0 Bit 9: BusIO Bit1 Bit 10: BusIO Bit2 Bit 11: BusIO Bit3 Bit 12: BusIO Bit4 Bit 13: BusIO Bit5 Bit 14: BusIO Bit6 Bit 15: BusIO Bit7	INT	R	SK 54xE
_4_State_digital_output	Zustand digitale Ausgänge	P711	вуте	R	SK 52xE SK 53xE SK 2xxE SK 2xxE-FDS SK 180E

Name	Funktion	Normierung	Тур	Zugriff	Gerät
					SK 190E
_4_State_digital_output	Zustand digitale Ausgänge	Bit 0: DOUT1 Bit 1: DOUT2 Bit 2: DOUT_BRAKE Bit 3: DOUT_BUS1 Bit 4: DOUT_BUS2	ВУТЕ	R	SK 155E-FDS SK 175E-FDS
_5_State_Digital_input	Zustand digitale Eingänge	Bit 0: DIN1 Bit 1: DIN2 Bit 2: DIN3 Bit 3: DIN4 Bit 4: DIN5 Bit 5: DIN6 Bit 6: DIN1 CU5-MLT Bit 7: DIN2 CU5-MLT Bit 8: DIN3 CU5-MLT Bit 9 DIN4 CU5-MLT Bit 10 frei Bit 11 frei Bit 12: Digitalfunktion AIN1 Bit 8: Digitalfunktion AIN2	INT	R	SK 5xxP On/On+
_5_State_Digital_input	Zustand digitale Eingänge	Bit 0: DIN1 Bit 1: DIN2 Bit 2: DIN3 Bit 3: DIN4 Bit 4: DIN5 Bit 5: DIN6 Bit 6: DIN7 Bit 7: Digitalfunktion AIN1 Bit 8: Digitalfunktion AIN2	INT	R	SK 54xE
_5_State_Digital_input	Zustand digitale Eingänge	Bit 0: DIN1 Bit 1: DIN2 Bit 2: DIN3 Bit 3: DIN4 Bit 4: DIN5 Bit 5: DIN6 Bit 6: DIN7	INT	R	SK 52xE SK 53xE
_5_State_Digital_input	Zustand digitale Eingänge	Bit 0: DIN1 Bit 1: DIN2 Bit 2: DIN3 Bit 3: DIN4 Bit 4: frei Bit 5: Kaltleiter Bit 6: frei Bit 7: frei Bit 8: DIN1 IOE 1	INT	R	SK 2xxE

Name	Funktion	Normierung	Тур	Zugriff	Gerät
		Bit 9: DIN2 IOE 1 Bit 10: DIN3 IOE 1 Bit 11: DIN4 IOE 1 Bit 12: DIN1 IOE 2 Bit 13: DIN2 IOE 2 Bit 14: DIN3 IOE 2 Bit 15: DIN4 IOE 2			
_5_State_Digital_input	Zustand digitale Eingänge	Bit 0: DIN1 Bit 1: DIN2 Bit 2: DIN3 Bit 3: AIN1 Bit 4: AIN2 Bit 5: Kaltleiter Bit 6: frei Bit 7: frei Bit 8: DIN1 IOE 1 Bit 9: DIN2 IOE 1 Bit 10: DIN3 IOE 1 Bit 11: DIN4 IOE 1 Bit 12: DIN1 IOE 2 Bit 13: DIN2 IOE 2 Bit 14: DIN3 IOE 2 Bit 15: DIN4 IOE 2	INT	R	SK 180E SK 190E
_5_State_Digital_input	Zustand digitale Eingänge	Bit 0: DIN1 Bit 1: DIN2 Bit 2: DIN3 Bit 3: TF (Kaltleiter) Bit 4: DIN-BUS1 (ASiI1) Bit 5: DIN-BUS2 (ASiI2) Bit 6: DIN-BUS3 (ASiI3) Bit 7: DIN-BUS4 (ASiI4) Bit 8: BDDI1 (ASIO3) Bit 9: BDDI2 (ASIO4) Bit 10: STO	INT	R	SK 155E-FDS SK 175E-FDS
_5_State_Digital_input	Zustand digitale Eingänge	Bit 0: DIN1 Bit 1: DIN2 Bit 2: DIN3 Bit 3: DIN4 Bit 4: DIN5 Bit 5: DIN6/AIN1 Bit 6: DIN7/AIN2 Bit 7: Kaltleiter Bit 8: DIN1 IOE 1 Bit 9: DIN2 IOE 1 Bit 10: DIN3 IOE 1 Bit 11: DIN4 IOE 1 Bit 12: DIN1 IOE 2 Bit 13: DIN2 IOE 2 Bit 14: DIN3 IOE 2 Bit 15: DIN4 IOE 2	INT	R	SK 2xxE-FDS

Name	Funktion	Normierung	Тур	Zugriff	Gerät
_6_Delay_digital_inputs	Zustand digitale Eingänge nach P475	Bit 0: DIN1 Bit 1: DIN2 Bit 2: DIN3 Bit 3: DIN4 Bit 4: DIN5 Bit 5: DIN6 Bit 6: DIN7 Bit 7: Digitalfunktion AIN1 Bit 8: Digitalfunktion AIN2	INT	R	SK 5xxP SK 54xE On/On+
_6_Delay_digital_inputs	Zustand digitale Eingänge nach P475	Bit 0: DIN1 Bit 1: DIN2 Bit 2: DIN3 Bit 3: DIN4 Bit 4: DIN5 Bit 5: DIN6 Bit 6: DIN7	INT	R	SK 52xE SK 53xE
_6_Delay_digital_inputs	Zustand digitale Eingänge nach P475	Bit 0: DIN1 Bit 1: DIN2 Bit 2: DIN3 Bit 3: AIN1 Bit 4: AIN2 Bit 5: Kaltleiter Bit 6: free Bit 7: free Bit 8: DIN1 IOE 1 Bit 9: DIN2 IOE 1 Bit 10: DIN3 IOE 1 Bit 11: DIN4 IOE 1 Bit 12: DIN1 IOE 2 Bit 13: DIN2 IOE 2 Bit 14: DIN3 IOE 2 Bit 15: DIN4 IOE 2	INT	R	SK 2xxE SK 180E SK 190E
_6_Delay_digital_inputs	Zustand digitale Eingänge nach P475	Bit 0: DIN1 Bit 1: DIN2 Bit 2: DIN3 Bit 3: DIN4 Bit 4: DIN5 Bit 5: DIN6/AIN1 Bit 6: DIN7/AIN2 Bit 7: Kaltleiter Bit 8: DIN1 IOE 1 Bit 9: DIN2 IOE 1 Bit 10: DIN3 IOE 1 Bit 11: DIN4 IOE 1 Bit 12: DIN1 IOE 2 Bit 13: DIN2 IOE 2 Bit 14: DIN3 IOE 2 Bit 15: DIN4 IOE 2	INT	R	SK 2xxE-FDS

Name	Funktion	Normierung	Тур	Zugriff	Gerät
_7_Analog_input1	Wert Analogeingang 1 (AIN1)	10,00V = 1000	INT	R	alle
_8_Analog_input2	Wert Analogeingang 2 (AIN2)	10,00V = 1000	INT	R	alle
_9_Analog_input3	Wert Analogfunktion DIN2	10,00V = 1000	INT	R	SK 5xxP SK 54xE SK 155E-FDS SK 175E-FDS
_10_Analog_input4	Wert Analogfunktion DIN3	10,00V = 1000	INT	R	SK 5xxP SK 54xE SK 155E-FDS SK 175E-FDS
_11_External_analog_ input1	Wert analoger Eingang 1 (1.IOE)	10,00V = 1000	INT	R	SK 5xxP SK 54xE SK 2xxE SK 2xxE-FDS SK 180E SK 190E
_12_External_analog_ input2	Wert analoger Eingang 2 (1.IOE)	10,00V = 1000	INT	R	SK 5xxP SK 54xE SK 2xxE SK 2xxE-FDS SK 180E SK 190E
_13_External_analog_ input3	Wert analoger Eingang 1 (2.IOE)	10,00V = 1000	INT	R	SK 5xxP SK 54xE SK 2xxE SK 2xxE-FDS SK 180E SK 190E
_14_External_analog_ input4	Wert analoger Eingang 2 (2.IOE)	10,00V = 1000	INT	R	SK 5xxP SK 54xE SK 2xxE SK 2xxE-FDS SK 180E SK 190E
_15_State_analog_ output	Zustand analoger Ausgang	10,0V = 100	BYTE	R	SK 5xxP SK 54xE
_16_State_ext_analog_ out1	Zustand Analogausgang (1. IOE)	10,00V = 1000	INT	R	SK 5xxP SK 54xE SK 2xxE SK 2xxE-FDS SK 180E SK 190E
_17_State_ext_analog_ out2	Zustand Analogausgang (2. IOE)	10,00V = 1000	INT	R	SK 5xxP SK 54xE

Name	Funktion	Normierung	Тур	Zugriff	Gerät
					SK 2xxE SK 180E SK 190E
_18_Dip_switch_state	Zustand der DIP Schalter	Bit 0: DIP1 Bit 1: DIP2 Bit 2: DIP3 Bit 3: DIP4 Bit 4: DIP_I1 Bit 5: DIP_I2 Bit 6: DIP_I3 Bit 7: DIP_I4	INT	R	SK 155E-FDS SK 175E-FDS
_19_State_digital_input _IOE	Zustand digitale Eingänge (IOE)	Bit 0: DIN1 IOE 2 Bit 1: DIN2 IOE 2 Bit 2: DIN3 IOE 2 Bit 3: DIN4 IOE 2 Bit 4: DIN1 IOE 1 Bit 5: DIN2 IOE 1 Bit 6: DIN3 IOE 1 Bit 7: DIN4 IOE 1	INT	R	SK 5xxP On/On+

3.5.2 PLC Soll- und Istwerte

Die hier aufgeführten Prozesswerte bilden die Schnittstelle der PLC zum Gerät. Die Funktion der PLC Sollwerte wird im (P553) festgelegt.

i Information

Der Prozesswert PLC_control_word überschreibt den Funktionsblock MC_Power. Die PLC Sollwerte überschreiben die Funktionsblöcke MC_Move.... und MC_Home.

Name	Funktion	Normierung	Тур	Zugriff	Gerät
_20_PLC_control_word	PLC Steuerwort	Entspricht USS Profil	INT	R/W	alle
_21_PLC_set_val1	PLC Sollwert 1	100% = 4000h	INT	R/W	SK 5xxP SK 54xE SK 53xE SK 52xE SK 2xxE SK 2xxE-FDS SK 180E SK 190E On/On+
_22_PLC_set_val2	PLC Sollwert 2	100% = 4000h	INT	R/W	SK 5xxP SK 54xE SK 53xE SK 52xE SK 2xxE SK 2xxE-FDS SK 180E SK 190E On/On+
_23_PLC_set_val3	PLC Sollwert 3	100% = 4000h	INT	R/W	SK 5xxP SK 54xE SK 53xE SK 52xE SK 2xxE SK 2xxE-FDS SK 180E SK 190E On/On+
_24_PLC_set_val4	PLC Sollwert 4	100% = 4000h	INT	R/W	SK 5xxP SK 54xE SK 53xE SK 52xE SK 2xxE SK 2xxE-FDS On/On+
_25_PLC_set_val5	PLC Sollwert 5	100% = 4000h	INT	R/W	SK 5xxP SK 54xE SK 53xE SK 52xE SK 2xxE

Name	Funktion	Normierung	Тур	Zugriff	Gerät
					SK 2xxE-FDS On/On+
_26_PLC_additional _control_word1	PLC Zusatzsteuerwort 1	Entspricht USS Profil	INT	R/W	SK 5xxP SK 54xE SK 53xE SK 52xE SK 2xxE SK 2xxE-FDS SK 180E SK 190E On/On+
_27_PLC_additional _control_word2	PLC Zusatzsteuerwort 2	Entspricht USS Profil	INT	R/W	SK 5xxP SK 54xE SK 53xE SK 52xE SK 2xxE SK 2xxE-FDS SK 180E SK 190E On/On+
_28_PLC_status_word	PLC Statuswort	Entspricht USS Profil	INT	R/W	SK 5xxP SK 54xE SK 53xE SK 52xE SK 2xxE SK 2xxE-FDS SK 180E SK 190E On/On+
_29_PLC_act_val1	PLC Istwert 1	100% = 4000h	INT	R/W	SK 5xxP SK 54xE SK 53xE SK 52xE SK 2xxE SK 2xxE-FDS SK 180E SK 190E On/On+
_30_PLC_act_val2	PLC Istwert 2	100% = 4000h	INT	R/W	SK 5xxP SK 54xE SK 53xE SK 52xE SK 2xxE SK 2xxE-FDS SK 180E SK 190E On/On+
_31_PLC_act_val3	PLC Istwert 3	100% = 4000h	INT	R/W	SK 5xxP SK 54xE

Name	Funktion	Normierung	Тур	Zugriff	Gerät
					SK 53xE SK 52xE SK 2xxE SK 2xxE-FDS SK 180E SK 190E On/On+
_32_PLC_act_val4	PLC Istwert 4	100% = 4000h	INT	R/W	SK 5xxP SK 54xE SK 53xE SK 52xE SK 2xxE SK 2xxE-FDS On/On+
_33_PLC_act_val5	PLC Istwert 5	100% = 4000h	INT	R/W	SK 5xxP SK 54xE SK 53xE SK 52xE SK 2xxE SK 2xxE-FDS On/On+
_34_PLC_Busmaster_ Control_word	Steuerwort der Leitfunktion (Busmasterfunktion) über PLC	Entspricht USS Profil	INT	R/W	SK 5xxP SK 54xE SK 53xE SK 52xE SK 2xxE SK 2xxE-FDS SK 180E SK 190E On/On+
_35_PLC_32Bit_set_ val1	32Bit PLC Sollwert - P553[1] = Low Part des 32Bit Wert - P553[2] = High Part des 32Bit Wert		LONG	R/W	SK 5xxP SK 54xE SK 53xE SK 52xE SK 2xxE SK 2xxE-FDS SK 180E SK 190E On/On+
_36_PLC_32Bit_act_ val1	32Bit PLC Istwert - PLC Istwert 1 = Low Part des 32Bit Wert - PLC Istwert 2 = High Part des 32Bit Wert	_	LONG	R/W	SK 5xxP SK 54xE SK 53xE SK 52xE SK 2xxE SK 2xxE-FDS SK 180E SK 190E On/On+
_37_PLC_status_bits	Virtuelle Status-	Bit 0: PLC-DOUT1	INT	R/W	SK 155E-FDS

Name	Funktion	Normierung	Тур	Zugriff	Gerät
	Ausgänge der PLC	Bit 1: PLC-DOUT2			SK 175E-FDS
_38_PLC_control_bits	Virtuelle Steuer- Ausgänge der PLC	Bit 0: PLC-DIN1 Bit 1: PLC-DIN2 Bit 2: PLC-DIN3 Bit 3: PLC-DIN4 Bit 4: PLC-DIN5 Bit 5: PLC-DIN6 Bit 6: PLC-DIN7 Bit 7: PLC-DIN8	INT	R/W	SK 155E-FDS SK 175E-FDS
_39_PLC_set_digital_ output_bus	Ausgehende PLC Busl/O Daten	Bit 0: BusIO Bit0 Bit 1: BusIO Bit1 Bit 2: BusIO Bit2 Bit 3: BusIO Bit3 Bit 4: BusIO Bit4 Bit 5: BusIO Bit5 Bit 6: BusIO Bit6 Bit 7: BusIO Bit7 Bit 8: Merker 1 Bit 9: Merker 2 Bit 10: Statuswort Bit 11 Bit 11: Statuswort Bit 12	INT	R/W	SK 5xxP On/On+

3.5.3 Bus Soll- und Istwerte

Diese Prozesswerte spiegeln alle Soll- und Istwerte wieder, die über die verschiedenen Bussysteme in das Gerät gelangen.

Name	Funktion	Normierung	Тур	Zugriff	Gerät
_40_Inverter_status	FU Statuswort	Entspricht USS Profil	INT	R	alle
_41_Inverter_act_val1	FU Istwert 1	100% = 4000h	INT	R	alle
_42_Inverter_act_val2	FU Istwert 2	100% = 4000h	INT	R	alle
_43_Inverter_act_val3	FU Istwert 3	100% = 4000h	INT	R	alle
_44_Inverter_act_val4	FU Istwert 4	100% = 4000h	INT	R	SK 5xxP SK 54xE On/On+
_45_Inverter_act_val5	FU Istwert 5	100% = 4000h	INT	R	SK 5xxP SK 54xE On/On+
_46_Inverter_lead_val1	Broadcast Master Funktion: Leitwert 1	100% = 4000h	INT	R	SK 5xxP SK 54xE SK 53xE SK 52xE SK 2xxE SK 2xxE-FDS SK 180E SK 190E On/On+
_47_Inverter_lead_val2	Broadcast Master Funktion: Leitwert 2	100% = 4000h	INT	R	SK 5xxP SK 54xE SK 53xE SK 52xE SK 2xxE SK 2xxE-FDS SK 180E SK 190E On/On+
_48_Inverter_lead_val3	Broadcast Master Funktion: Leitwert 3	100% = 4000h	INT	R	SK 5xxP SK 54xE SK 53xE SK 52xE SK 2xxE SK 2xxE-FDS SK 180E SK 190E On/On+
_49_Inverter_lead_val4	Broadcast Master Funktion: Leitwert 4	100% = 4000h	INT	R	SK 5xxP SK 54xE On/On+
_50_Inverter_lead_val5	Broadcast Master	100% = 4000h	INT	R	SK 5xxP
	•	•		•	•

Name	Funktion	Normierung	Тур	Zugriff	Gerät
	Funktion: Leitwert 5				SK 54xE On/On+
_51_Inverter_control_w ord	Resultierendes Steuerwort Bus	Entspricht USS Profil	ÎNT	R	SK 5xxP SK 54xE SK 53xE SK 52xE SK 2xxE SK 2xxE-FDS SK 180E SK 190E On/On+
_52_Inverter_set_val1	Resultierender Hauptsollwert 1 Bus	100% = 4000h	INT	R	SK 5xxP SK 54xE SK 53xE SK 52xE SK 2xxE SK 2xxE-FDS SK 180E SK 190E On/On+
_53_Inverter_set_val2	Resultierender Hauptsollwert 2 Bus	100% = 4000h	INT	R	SK 5xxP SK 54xE SK 53xE SK 52xE SK 2xxE SK 2xxE-FDS SK 180E SK 190E On/On+
_54_Inverter_set_val3	Resultierender Hauptsollwert 3 Bus	100% = 4000h	INT	R	SK 5xxP SK 54xE SK 53xE SK 52xE SK 2xxE SK 2xxE-FDS SK 180E SK 190E On/On+
_55_Inverter_set_val4	Resultierender Hauptsollwert 4 Bus	100% = 4000h	INT	R	SK 5xxP SK 54xE On/On+
_56_Inverter_set_val5	Resultierender Hauptsollwert 5 Bus	100% = 4000h	INT	R	SK 5xxP SK 54xE On/On+
_57_Broadcast_set_val 1	Broadcast Slave: Nebensollwert 1	100% = 4000h	INT	R	SK 5xxP SK 54xE SK 53xE SK 52xE SK 2xxE

Name	Funktion	Normierung	Тур	Zugriff	Gerät
					SK 2xxE-FDS SK 180E SK 190E On/On+
_58_Broadcast_set_val 2	Broadcast Slave: Nebensollwert 2	100% = 4000h	INT	R	SK 5xxP SK 54xE SK 53xE SK 52xE SK 2xxE SK 180E SK 190E On/On+
_59_Broadcast_set_val	Broadcast Slave: Nebensollwert 3	100% = 4000h	INT	R	SK 5xxP SK 54xE SK 53xE SK 52xE SK 2xxE SK 180E SK 190E On/On+
_60_Broadcast_set_val 4	Broadcast Slave: Nebensollwert 4	100% = 4000h	INT	R	SK 5xxP SK 54xE On/On+
_61_Broadcast_set_val 5	Broadcast Slave: Nebensollwert 5	100% = 4000h	INT	R	SK 5xxP SK 54xE On/On+
_62_Inverter_32Bit_set _val1	Resultierender 32Bit Hauptsollwert 1 Bus	- Low Part in P546[1] - High Part in P546[2]	LONG	R	SK 5xxP SK 54xE SK 53xE SK 52xE SK 2xxE SK 180E SK 190E On/On+
_63_Inverter_32Bit_act _val1	FU 32Bit Istwert 1	- Low Part in P543[1] - High Part in P543[2]	LONG	R	SK 5xxP SK 54xE SK 53xE SK 52xE SK 2xxE SK 180E SK 190E On/On+
_64_Inverter_32Bit_lea d_val1	32Bit Leitwert 1	- Low Part in P502[1] - High Part in P502[2]	LONG	R	SK 5xxP SK 54xE SK 2xxE SK 180E SK 190E On/On+

Name	Funktion	Normierung	Тур	Zugriff	Gerät
_65_Broadcast_32Bit_s et_val1	32Bit Broadcast Slave Nebensollwert 1	- Low Part in P543[1] - High Part in P543[2]	LONG	R	SK 5xxP SK 54xE SK 53xE SK 52xE SK 2xxE SK 180E SK 190E On/On+
_66_BusIO_input_bits	Eingehende BusI/O Daten	- Bit0 - 7 = Bus I/O In Bit 0 - 7 - Bit 8 = Merker 1 - Bit 9 = Merker 2 - Bit 10 = Bit8 vom Bus Steuerwort - Bit 11 = Bit9 vom Bus Steuerwort	INT	R	SK 5xxP SK 54xE SK 53xE SK 52xE SK 2xxE SK 2xxE-FDS SK 180E SK 190E On/On+
_67_BusIO_output_bits	Ausgehende Busl/O Daten	Bit0 = Bus / AS-i Dig Out1 Bit1 = Bus / AS-i Dig Out2 Bit2 = Bus / AS-i Dig Out3 Bit3 = Bus / AS-i Dig Out4 Bit4 = Bus / 1.IOE Dig Out1 Bit5 = Bus / 1.IOE Dig Out2 Bit6 = Bus / 2.IOE Dig Out1 Bit7 = Bus / 2.IOE Dig Out2 Bit8 = Bit 10 Bus Statuswort Bit9 = Bit 11 Bus Statuswort	INT	R	SK 5xxP SK 54xE On/On+
_67_BusIO_output_bits	Ausgehende Busl/O Daten	Bit0 = Bus / AS-i Dig Out1 Bit1 = Bus / AS-i Dig Out2 Bit2 = Bus / AS-i Dig Out3 Bit3 = Bus / AS-i Dig Out4 Bit4 = AS-i Aktor 1 Bit5 = AS-i Aktor 2 Bit6 = Merker 1 Bit7 = Merker 2 Bit8 = Bit 10 Bus Statuswort Bit9 = Bit 11 Bus	INT	R	SK 53xE SK 52xE

Name	Funktion	Normierung	Тур	Zugriff	Gerät
		Statuswort			
_67_BusIO_output_bits	Ausgehende Busl/O Daten	Bit0 = Bus / AS-i Dig Out1 Bit1 = Bus / AS-i Dig Out2 Bit2 = Bus / AS-i Dig Out3 Bit3 = Bus / AS-i Dig Out4 Bit4 = Bus / IOE Dig Out1 Bit5 = Bus / IOE Dig Out2 Bit6 = Bus / 2nd IOE Dig Out1 Bit7 = Bus / 2nd IOE Dig Out2 Bit8 = Bit 10 Bus Statuswort Bit9 = Bit 11 Bus Statuswort	INT	R	SK 2xxE
_67_BusIO_output_bits	Ausgehende Busl/O Daten	Bit0 = Bus / AS-i Dig Out1 Bit1 = Bus / AS-i Dig Out2 Bit2 = Bus / AS-i Dig Out3 Bit3 = Bus / AS-i Dig Out4 Bit4 = Bus / AS-i Dig Out5 Bit5 = Bus / AS-i Dig Out6 Bit6 = Bus / 2nd IOE Dig Out1 Bit7 = Bus / 2nd IOE Dig Out2 Bit8 = Bit 10 Bus Statuswort Bit9 = Bit 11 Bus Statuswort	INT	R	SK 2xxE-FDS

3.5.4 ControlBox und ParameterBox

Über die hier aufgeführten Prozesswerte kann auf die Bedienboxen zugegriffen werden. Damit ist die Realisierung einfacher HMI Anwendungen möglich.

1 Information

Damit die "key_states" in der PLC angezeigt werden, müssen sich die Control- und die ParameterBox im PLC-Anzeige-Modus befinden. Anderenfalls wird nur ein Wert "0" dargestellt.

Name	Funktion	Normierung	Тур	Zugriff	Gerät
_70_Set_controlbox_ show_val	Anzeigewert für die ControlBox	Anzeigewert = Bit 29 – Bit 0 Kommastelle = Bit 31 – Bit30	DINT	R/W	alle
_71_Controlbox_key_ state	Tastaturzustand der ControlBox	Bit 0: ON Bit 1: OFF Bit 2: DIR Bit 3: UP Bit 4: DOWN Bit 5: Enter	ВҮТЕ	R	alle
_72_Parameterbox_ key_state	Tastaturzustand der ParameterBox	Bit 0: ON Bit 1: OFF Bit 2: DIR Bit 3: UP Bit 4: DOWN Bit 5: Enter Bit 6: Right Bit 7: Left	ВУТЕ	R	alle

3.5.5 Infoparameter

Hier sind die wichtigsten Istwerte des Gerätes aufgeführt.

Name	Funktion	Normierung	Тур	Zugriff	Gerät
_80_Current_fault	aktuelle Störungsnummer	Fehler 10.0 = 100	BYTE	R	alle
_81_Current_warning	aktuelle Warnung	Warnung 10.0 = 100	BYTE	R	alle
_82_Current_reason_ FI_blocked	aktuelle Ursache für den Zustand Einschaltsperre	Problem 10.0 = 100	BYTE	R	alle
_83_Input_voltage	aktuelle Netzspannung	100 V = 100	INT	R	alle
_84_Current_frequenz	aktuelle Frequenz	10Hz = 100	INT	R	alle
_85_Current_set_ point_frequency1	aktuelle Sollfrequenz von der Sollwertquelle	10Hz = 100	INT	R	SK 5xxP SK 54xE SK 53xE SK 52xE SK 2xxE SK 2xxE-FDS SK 180E SK 190E On/On+
_86_Current_set_ point_frequency2	aktuelle Sollfrequenz Umrichter	10Hz = 100	INT	R	SK 5xxP SK 54xE SK 53xE SK 52xE SK 2xxE SK 2xxE-FDS SK 180E SK 190E On/On+
_87_Current_set_ point_frequency3	aktuelle Sollfrequenz nach Rampe	10Hz = 100	INT	R	SK 5xxP SK 54xE SK 53xE SK 52xE SK 2xxE SK 2xxE-FDS SK 180E SK 190E On/On+
_88_Current_Speed	aktuelle berechnete Drehzahl	100rpm = 100	INT	R	alle
_89_Actual_current	aktueller Ausgangsstrom	10.0A = 100	INT	R	alle
_90_Actual_torque_ current	aktueller Momentstrom	10.0A = 100	INT	R	alle
_91_Current_voltage	aktuelle Spannung	100V = 100	ÎNT	R	alle

Name	Funktion	Normierung	Тур	Zugriff	Gerät
_92_Dc_link_voltage	aktuelle Zwischenkreisspannung	100V = 100	INT	R	SK 5xxP SK 54xE SK 53xE SK 52xE SK 2xxE SK 2xxE-FDS SK 180E SK 190E On/On+
_93_Actual_field_ current	aktueller Feldstrom	10.0A = 100	INT	R	alle
_94_Voltage_d	aktuelle Spannungskomponente d-Achse	100V = 100	INT	R	alle
_95_Voltage_q	aktuelle Spannungskomponente q-Achse	100V = 100	INT	R	alle
_96_Current_cos_phi	aktueller Cos(phi)	0.80 = 80	BYTE	R	alle
_97_Torque	aktuelles Drehmoment	100% = 100	INT	R	SK 5xxP SK 54xE SK 53xE SK 52xE SK 2xxE SK 2xxE-FDS SK 180E SK 190E On/On+
_98_Field	aktuelles Feld	100% = 100	ВУТЕ	R	SK 5xxP SK 54xE SK 53xE SK 52xE SK 2xxE SK 2xxE-FDS SK 180E SK 190E On/On+
_99_Apparent_power	aktuelle Scheinleistung	1,00KW = 100	INT	R	alle
_100_Mechanical_ power	aktuelle mechanische Leistung	1,00KW = 100	INT	R	alle
_101_Speed_encoder	aktuelle gemessene Drehzahl	100rpm = 100	INT	R	SK 5xxP SK 54xE SK 53xE SK 52xE On/On+
_102_Usage_rate_ motor	aktuelle Auslastung Motor (Momentanw.)	100% = 100	INT	R	alle

Name	Funktion	Normierung	Тур	Zugriff	Gerät
_103_Usage_rate_ motor_I2t	aktuelle Auslastung Motor I2t	100% = 100	INT	R	SK 5xxP SK 54xE SK 2xxE SK 2xxE-FDS SK 180E SK 190E On/On+
_104_Usage_rate_ brake_resistor	aktuelle Auslastung Bremswiderstand	100% = 100	INT	R	SK 5xxP SK 54xE SK 53xE SK 52xE SK 2xxE SK 2xxE-FDS SK 180E SK 190E On/On+
_105_Head_sink_temp	aktuelle Kühlkörpertemperatur	100°C = 100	INT	R	SK 5xxP SK 54xE SK 53xE SK 52xE SK 2xxE SK 2xxE-FDS SK 180E SK 190E On/On+
_106_Inside_temp	aktuelle Innenraumtemperatur	100°C = 100	INT	R	SK 5xxP SK 54xE SK 2xxE SK 2xxE-FDS SK 180E SK 190E On/On+
_107_Motor_temp	aktuelle Motortemperatur	100°C = 100	INT	R	SK 5xxP SK 54xE SK 53xE SK 52xE SK 2xxE SK 2xxE-FDS SK 180E SK 190E On/On+
_108_Actual_net_ frequency	aktuelle Netzfrequenz	10Hz = 100	INT	R	SK 155E-FDS SK 175E-FDS
_109_Mains_phase_ sequence	aktuelle Netz- Phasenfolge	0=CW, 1=CCW	BYTE	R	SK 155E-FDS SK 175E-FDS

Name	Funktion	Normierung	Тур	Zugriff	Gerät
_141_Pos_Sensor_Inc	Position des Inkrementalgebers	0.001 Umdrehung	DINT	R	SK 5xxP SK 54xE SK 53xE SK 52xE SK 2xxE SK 180E SK 190E On/On+
_142_Pos_Sensor_Abs	Position des Absolutwertgebers	0.001 Umdrehung	DINT	R	SK 5xxP SK 54xE SK 53xE SK 52xE SK 2xxE SK 180E SK 190E On/On+
_143_Pos_Sensor_Uni	Position des Universalgebers	0.001 Umdrehung	DINT	R	SK 5xxP SK 54xE On/On+
_144_Pos_Sensor_HTL	Position des HTL-Gebers	0.001 Umdrehung	DINT	R	SK 5xxP SK 54xE On/On+
_145_Actual_pos	Istposition	0.001 Umdrehung	DINT	R	SK 5xxP SK 54xE SK 53xE SK 52xE SK 2xxE SK 180E SK 190E On/On+
_146_Actual_ref_pos	Aktuelle Sollposition	0.001 Umdrehung	DINT	R	SK 5xxP SK 54xE SK 53xE SK 52xE SK 2xxE SK 180E SK 190E On/On+
_147_Actual_pos_diff	Positionsdifferenz zwischen Soll- und Istwert	0.001 Umdrehung	DINT	R	SK 5xxP SK 54xE SK 53xE SK 52xE SK 2xxE SK 180E SK 190E On/On+
_150_Direct_dc_link_ voltage	aktuelle Zwischenkreisspannung (ungefiltert)	100V = 100	INT	R	SK 5xxP On/On+

Name	Funktion	Normierung	Тур	Zugriff	Gerät
_151_Direct_torque_ current	aktueller Momentstrom (ungefiltert)	ST: Wert := INT_TO_DINT(_151_D irect_torque_curre nt) * INT_TO_DINT(_153_F actor_InFu_B)) / DINT#819 1A = 100	INT	R	SK 5xxP On/On+
_152_Direct_field_ current	aktueller Feldstrom (ungefiltert)	AWL: LD _153_Factor_InFu_B INT_TO_DINT ST Num_InFu LD _151_Direct_torque _current INT_TO_DINT MUL Num_InFu DIV DINT#819 ST Wert 1A = 100	INT	R	SK 5xxP On/On+
_153_Factor_InFu_B	Faktor für die Berechnung des aktuellen Moment- oder Feldstroms		INT	R	SK 5xxP On/On+

3.5.6 PLC Fehler

Über die User Error Flags können aus dem PLC Programm heraus die Gerätefehler E23.0 bis E24.7 gesetzt werden.

Name	Funktion	Normierung	Тур	Zugriff	Gerät
_110_ErrorFlags	Erzeugt Benutzerfehler im Gerät	Bit 0: E 23.0 Bit 1: E 23.1 Bit 2: E 23.2 Bit 3: E 23.3 Bit 4: E 23.4 Bit 5: E 23.5 Bit 6: E 23.6 Bit 7: E 23.7	ВУТЕ	R/W	alle
_111_ErrorFlags_ext	Erzeugt Benutzerfehler im Gerät	Bit 0: E 24.0 Bit 1: E 24.1 Bit 2: E 24.2 Bit 3: E 24.3 Bit 4: E 24.4 Bit 5: E 24.5 Bit 6: E 24.6 Bit 7: E 24.7	ВУТЕ	R/W	alle

3.5.7 PLC Parameter

Über diese Gruppen von Prozessdaten kann direkt auf die PLC Parameter P355, P356 und P360 zugegriffen werden.

Name	Funktion	Normierung	Тур	Zugriff	Gerät
_115_PLC_P355_1	PLC INT Parameter P355 [-01]	-	INT	R	alle
_116_PLC_P355_2	PLC INT Parameter P355 [-02]	-	INT	R	alle
_117_PLC_P355_3	PLC INT Parameter P355 [-03]	-	INT	R	alle
_118_PLC_P355_4	PLC INT Parameter P355 [-04]	-	INT	R	alle
_119_PLC_P355_5	PLC INT Parameter P355 [-05]	-	INT	R	alle
_120_PLC_P355_6	PLC INT Parameter P355 [-06]	-	INT	R	alle
_121_PLC_P355_7	PLC INT Parameter P355 [-07]	-	INT	R	alle
_122_PLC_P355_8	PLC INT Parameter P355 [-08]	-	INT	R	alle
_123_PLC_P355_9	PLC INT Parameter P355 [-09]	-	INT	R	alle
_124_PLC_P355_10	PLC INT Parameter P355 [-10]	-	INT	R	alle
_125_PLC_P356_1	PLC LONG Parameter P356 [-01]	-	DINT	R	alle
_126_PLC_P356_2	PLC LONG Parameter P356 [-02]	-	DINT	R	alle
_127_PLC_P356_3	PLC LONG Parameter P356 [-03]	-	DINT	R	alle
_128_PLC_P356_4	PLC LONG Parameter P356 [-04]	-	DINT	R	alle
_129_PLC_P356_5	PLC LONG Parameter P356 [-05]	-	DINT	R	alle
_130_PLC_P360_1	PLC Anzeige Parameter P360[-01]	-	DINT	R/W	alle
_131_PLC_P360_2	PLC Anzeige Parameter P360[-02]	-	DINT	R/W	alle
_132_PLC_P360_3	PLC Anzeige Parameter P360[-03]	-	DINT	R/W	alle
_133_PLC_P360_4	PLC Anzeige Parameter P360[-04]	-	DINT	R/W	alle
_134_PLC_P360_5	PLC Anzeige Parameter	-	DINT	R/W	alle

Name	Funktion	Normierung	Тур	Zugriff	Gerät
	P360[-05]				
_135_PLC_Scope_ Int_1	PLC Scope Anzeigewert	-	INT	R/W	alle
_136_PLC_Scope_ Int_2	PLC Scope Anzeigewert 2	-	INT	R/W	alle
_137_PLC_Scope_ Int_3	PLC Scope Anzeigewert 3	-	INT	R/W	alle
_138_PLC_Scope_ Int_4	PLC Scope Anzeigewert 4	-	INT	R/W	alle
_139_PLC_Scope_ Bool_1	PLC Scope Anzeigewert 5	-	INT	R/W	alle
_140_PLC_Scope_ Bool_2	PLC Scope Anzeigewert 6	-	INT	R/W	alle

3.6 Sprachen

3.6.1 Anweisungsliste (AWL / IL)

3.6.1.1 Allgemein

Datentypen

Die PLC unterstützt die nachfolgend aufgeführten Datentypen.

Name	Benötigter Speicherplatz	Wertebereich
BOOL	1 Bit	0 bis 1
BYTE	1 Byte	0 bis 255
INT	2 Byte	-32768 bis 32767
DINT	4 Byte	-2.147.483.648 bis 2.147.483.647
LABEL_ADDRE SS	2 Byte	Sprungmarke

Literale

Zur besseren Übersicht ist es möglich Konstanten aller Datentypen in verschiedenen Darstellungsformen einzugeben. In nachfolgender Tabelle ist eine Übersicht über alle möglichen Varianten enthalten.

Literal	Beispiel	Zahl in dezimaler Darstellung
Bool	FALSE	0
	TRUE	1
	BOOL#0	0
	BOOL#1	1
Dual (Basis 2)	2#01011111	95
	2#0011_0011	51
	BYTE#2#00001111	15
	BYTE#2#0001_1111	31
Oktal (Basis 8)	8#0571	377
	8#05_71	377
	BYTE#8#10	8
	BYTE#8#111	73
	BYTE#8#1_11	73
Hexadezimal (Basis 16)	16#FFFF	-1
	16#0001_FFFF	131071
	INT#16#1000	4096
	DINT#16#0010_2030	1056816
Ganzzahlige (Basis 10)	10	10
	-10	-10
	10_000	10000
	INT#12	12
	DINT#-100000	-100000
Zeit	TIME#10s50ms	10,050 Sekunden
	T#5s500ms	5,5 Sekunden
	TIME#5.2s	5,2 Sekunden
	TIME#5D10H15M	5Tage+10Stunden+15Minuten
	T#1D2H30M20S	1Tag+2Stunden+30Minuten+20Sekunden

Kommentare

Für die spätere Lesbarkeit des PLC – Programmes ist es empfehlenswert Programmabschnitte mit Erklärungen zu versehen. Diese Kommentare werden im Anwenderprogramm beginnend durch die Zeichenfolge "(*" und abschließend durch "*)" gemäß nachfolgenden Beispielen gekennzeichnet.

```
(* Kommentar über einem Programmblock *)
LD 100 (* Kommentar hinter einem Befehl *)
ADD 20
```

Sprungmarke

Mit Hilfe der Operatoren JMP, JMPC oder JMPCN können ganze Programmteile übersprungen werden. Als Zieladresse wird eine Sprungmarke angegeben. Sie kann mit Ausnahme von Umlauten und "ß" alle Buchstaben, die Zahlen 0 bis 9 und Unterstriche enthalten, andere Zeichen sind nicht zulässig. Über einen Doppelpunkt wird die Sprungmarke abgeschlossen. Sie kann für sich alleine stehen. Es kann sich in derselben Zeile, hinter der Sprungmarke, auch noch ein weiterer Befehl befinden.

Mögliche Varianten könnten wie folgt aussehen:

Beispiel:

```
Sprungmarke:
LD 20
Das_Ist_eine_Sprungmarke:
ADD 10
MainLoop: LD 1000
```

Eine weitere Variant ist die Übergabe einer Sprungmarke als Variable. Dies Variable muss in der Variablentabelle als Typ LABLE_ADDRESS definiert werden, dann können in diese Variable Sprungmarken geladen werden. Hierüber lassen sich sehr einfach Zustandsmaschinen erzeugen, siehe unten

Beispiel:

```
LD FirstTime
JMPC AfterFirstTime
(* Die Labeladresse muss zu Beginn initialisiert werden. *)
LD Address 1
ST Address Var
LD TRUE
ST FirstTime
AfterFirstTime:
JMP Address Var
Address 1:
LD Address 2
ST Address Var
JMP Ende
Address 2:
LD Address 3
ST Address Var
JMP Ende
Address 3:
LD Address 1
ST Address Var
Ende:
```


Funktionsaufrufe

Der Editor unterstützt eine Form von Funktionsaufrufen. In den nachfolgenden Varianten wird die Funktion CTD über die Instanz I_CTD aufgerufen. Die Ergebnisse werden in Variablen gespeichert. Die Bedeutung der im Folgenden verwendeten Funktionen ist weiter hinten im Handbuch erläutert.

Beispiel:

```
LD 10000
ST I_CTD.PV
LD LoadNewVar
ST I_CTD.LD
LD TRUE
ST I_CTD.CD
CAL I_CTD
LD I_CTD.Q
ST ResultVar
LD I_CTD.CV
ST CurrentCountVar
```

Bitweiser Zugriff auf Variablen

Für den Zugriff auf ein Bit aus einer Variablen oder Prozessvariablen, ist eine vereinfachte Schreibweise möglich.

Befehl	Bedeutung
LD Var1.0	lädt das Bit 0 von Var1 ins AE
ST Var1.7	speichert den AE auf das Bit 7 von Var1
EQ Var1.4	vergleicht das AE mit dem Bit4 von Var1

3.6.2 Strukturierter Text (ST)

Der Strukturierte Text besteht aus einer Reihe von Anweisungen, die wie in Hochsprachen bedingt ("IF..THEN..ELSE) oder in Schleifen (WHILE..DO) ausgeführt werden können.

Beispiel:

```
IF value < 7 THEN
  WHILE value < 8 DO
   value := value + 1;
  END_WHILE;
END_IF;</pre>
```

3.6.2.1 Allgemein

Datentypen in ST

Die PLC unterstützt die nachfolgend aufgeführten Datentypen.

Name	Benötigter Speicherplatz	Wertebereich
BOOL	1 Bit	0 bis 1
BYTE	1 Byte	0 bis 255
INT	2 Byte	-32768 bis 32767
DINT	4 Byte	-2.147.483.648 bis 2.147.483.647

1 Information

Bei Zahlen ist es sinnvoll den Datentyp mit anzugeben, um ein effizientes PLC Programm zu erzeugen z.B.: VarInt := INT#-32768, VarDINT := DINT#-2147483648.

Zuweisungsoperator

Auf der linken Seite einer Zuweisung steht ein Operand (Variable, Adresse), dem der Wert des Ausdrucks auf der rechten Seite zugewiesen wird mit dem Zuweisungsoperator ":=".

Beispiel:

```
Var1 := Var2 * 10;
```

Nach Ausführung dieser Zeile hat Var1 den zehnfachen Wert von Var2.

Aufruf von Funktionsblöcken in ST

Ein Funktionsblock in ST wird aufgerufen, indem man den Namen der Instanz des Funktionsblocks schreibt und anschließend in Klammer die gewünschten Werte den Parametern zuweist. Im folgenden Beispiel wird ein Timer aufgerufen mit Zuweisungen für dessen Parameter IN und PT. Anschließend wird die Ergebnisvariable Q an die Variable A zugewiesen.

Die Ergebnisvariable wird wie in AWL mit dem Namen des Funktionsblocks, einem anschließenden Punkt und dem Namen der Variablen angesprochen.

Beispiel:

```
Timer(IN := TRUE, PT := 300);
A := Timer.Q;
```

Auswertung von Ausdrücken

Die Auswertung eines Ausdrucks erfolgt durch Abarbeitung der Operatoren nach bestimmten Bindungsregeln. Der Operator mit der stärksten Bindung wird zuerst abgearbeitet, dann der Operator mit der nächststärkeren Bindung, usw., bis alle Operatoren abgearbeitet sind. Operatoren mit gleicher Bindungsstärke werden von links nach rechts abgearbeitet.

Nachfolgend finden Sie eine Tabelle der ST-Operatoren in der Ordnung ihrer Bindungsstärke:

Operation	Symbol	Bindungsstärke
Einklammern	(Ausdruck)	Stärkste Bindung
Funktionsaufruf	Funktionsname (Parameterliste)	
Negieren Komplementbildung	NOT	
Multiplizieren Dividieren Modulo AND	* / MOD AND	
Addieren Subtrahieren OR XOR	+ - OR XOR	
Vergleiche Gleichheit Ungleichheit	<,>,<=,>= = <>	Schwächste Bindung

3.6.2.2 Anweisungen

Return

Die RETURN-Anweisung kann man verwenden, um an des Ende des Programms zu springen, beispielsweise abhängig von einer Bedingung.

IF

Mit der IF-Anweisung kann man eine Bedingung prüfen und abhängig von dieser Bedingung Anweisungen ausführen.

Syntax:

Der Teil in geschweiften Klammern {} ist optional.

Wenn <Boolscher_Ausdruck1> TRUE ergibt, dann werden nur die <IF_Anweisungen> ausgeführt und keine der weiteren Anweisungen. Andernfalls werden die Boolschen Ausdrücke, beginnend mit <Boolscher_Ausdruck2> der Reihe nach ausgewertet, bis einer der Ausdrücke TRUE ergibt. Dann werden nur die Anweisungen nach diesem Boolschen Ausdruck und vor dem nächsten ELSE oder ELSIF ausgewertet. Wenn keine der Boolschen Ausdrücke TRUE ergibt, dann werden ausschließlich die <ELSE Anweisungen> ausgewertet.

Beispiel:

```
IF temp < 17 THEN
  Bool1 := TRUE;
ELSE
  Bool2 := FALSE;
END_IF;</pre>
```


CASE

Mit der CASE-Anweisung kann man mehrere bedingte Anweisungen mit derselben Bedingungsvariablen in ein Konstrukt zusammenfassen.

Syntax:

Eine CASE-Anweisung wird nach folgendem Schema abgearbeitet:

- Wenn die Variable in <Var1> den Wert <Wert i> hat, dann wird die Anweisung <Anweisung i> ausgeführt
- Hat <Var 1> keinen der angegebenen Werte, dann wird die <ELSE-Anweisung> ausgeführt.
- Wenn für mehrere Werte der Variablen, dieselbe Anweisung auszuführen ist, dann kann man diese Werte mit Kommatas getrennt hintereinander schreiben, und damit die gemeinsame Anweisung bedingen.
- Wenn für einen Wertebereich der Variablen, dieselbe Anweisung auszuführen ist, dann kann man den Anfangs- und Endwert getrennt durch zwei Punkte hintereinanderschreiben, und damit die gemeinsame Anweisung bedingen.

Beispiel:

```
CASE INT1 OF
1, 5:
    BOOL1 := TRUE;
    BOOL3 := FALSE;
2:
    BOOL2 := FALSE;
    BOOL3 := TRUE;
10..20:
    BOOL1 := TRUE;
    BOOL3 := TRUE;
    BOOL3 := TRUE;
ELSE
    BOOL1 := NOT BOOL1;
    BOOL2 := BOOL1 OR BOOL2;
END_CASE;
```


FOR-Schleife

Mit der FOR-Schleife kann man wiederholte Vorgänge programmieren.

Syntax:

Der Teil in geschweiften Klammern {} ist optional. Die <Anweisungen> werden solange ausgeführt, solange der Zähler <INT_Var> nicht größer als der <END_WERT> ist. Dies wird vor der Ausführung der <Anweisungen> überprüft, so dass die <Anweisungen> niemals ausgeführt werden, wenn <INIT_WERT> größer als <END_WERT> ist. Immer, wenn <Anweisungen> ausgeführt worden ist, wird <INT_Var> um <Schrittgröße> erhöht. Die Schrittgröße kann jeden Integerwert haben. Fehlt sie wird diese auf 1 gesetzt. Die Schleife muss also terminieren, da <INT_Var> nur größer wird.

Beispiel:

```
FOR Zaehler :=1 TO 5 BY 1 DO
  Var1 := Var1 * 2;
END FOR;
```

REPEAT- Schleife

Die REPEAT-Schleife unterscheidet sich von den WHILE-Schleifen dadurch, dass die Abbruchbedingung erst nach dem Ausführen der Schleife überprüft wird. Das hat zur Folge, dass die Schleife mindestens einmal durchlaufen wird, egal wie die Abbruchbedingung lautet.

Syntax:

```
REPEAT
     <Anweisungen>
UNTIL <Boolescher Ausdruck>
END REPEAT;
```

Die <Anweisungen> werden solange ausgeführt, bis <Boolescher Ausdruck> TRUE ergibt. Wenn <Boolescher Ausdruck> bereits bei der ersten Auswertung TRUE ergibt, dann werden <Anweisungen> genau einmal ausgeführt. Wenn <Boolescher_Ausdruck> niemals den Wert TRUE annimmt, dann werden die <Anweisungen> endlos wiederholt, wodurch ein Laufzeitfehler entsteht.

i Information

Der Programmierer muss selbst dafür sorgen, dass keine Endlosschleife entsteht, indem er im Anweisungsteil der Schleife die Bedingung verändert, also zum Beispiel einen Zähler hoch- oder runterzählt.

Beispiel:

```
REPEAT
  Var1 := Var1 * 2;
  Zaehler := Zaehler - 1;
UNTIL
  Zaehler = 0
END REPEAT
```


WHILE-Schleife

Die WHILE-Schleife kann benutzt werden wie die FOR-Schleife, mit dem Unterschied, dass die Abbruchbedingung ein beliebiger boolescher Ausdruck sein kann. Das heißt, man gibt eine Bedingung an, die, wenn sie zutrifft, die Ausführung der Schleife zur Folge hat.

Syntax:

```
WHILE <Boolescher Ausdruck> DO
     <Anweisungen>
END WHILE;
```

Die <Anweisungen> werden solange ausgeführt, bis <Boolescher Ausdruck> FALSE ergibt. Wenn <Boolescher Ausdruck> bereits während der ersten Ausführung FALSE ergibt, dann werden <Anweisungen> genau einmal ausgeführt. Wenn <Boolescher_Ausdruck> niemals den Wert FALSE annimmt, dann werden die <Anweisungen> endlos wiederholt, wodurch ein Laufzeitfehler entsteht.

1 Information

Der Programmierer muss selbst dafür sorgen, dass keine Endlosschleife entsteht, indem er im Anweisungsteil der Schleife die Bedingung verändert, also zum Beispiel einen Zähler hoch- oder runterzählt.

Beispiel:

```
WHILE Zaehler >0 DO
  Var1 := Var1 * 2;
  Zaehler := Zaehler - 1;
END WHILE
```

Exit

Wenn die EXIT-Anweisung in einer FOR-, WHILE- oder REPEAT-Schleife vorkommt, dann wird die innerste Schleife beendet, ungeachtet der Abbruchbedingung.

3.7 Sprünge

3.7.1 JMP

	SK 5xxP	SK 54xE	SK 53xE SK 52xE	SK 2xxE	SK 2xxE-FDS		SK 155E-FDS SK 175E-FDS
Verfügbarkeit	Χ	Χ	X	Χ	Х	Χ	Х

Unbedingter Sprung zu einer Sprungmarke.

Beispiel in AWL:

```
JMP NextStep (* Unbedingter Sprung zu NextStep *)
ADD 1
NextStep:
ST Value1
```

3.7.2 **JMPC**

	SK 5xxP	SK 54xE	SK 53xE SK 52xE	SK 2xxE	SK 2xxE-FDS		SK 155E-FDS SK 175E-FDS
Verfügbarkeit	Χ	Х	Х	Х	Х	Х	X

Bedingter Sprung (Jump Conditional) zu einer Sprungmarke. Ist das AE = TRUE dann springt die Anweisung JMPC zur angegebenen Sprungmarke.

Beispiel in AWL:

```
LD 10

JMPC NextStep (* AE = TRUE à Programm springt *)

ADD 1

NextStep:

ST Value1
```

3.7.3 **JMPCN**

	SK 5xxP	SK 54xE	SK 53xE SK 52xE	SK 2xxE	SK 2xxE-FDS		SK 155E-FDS SK 175E-FDS
Verfügbarkeit	Х	Х	Х	Х	Х	Х	X

Bedingter Sprung (Jump Conditional) zu einer Sprungmarke. JMPCN springt, wenn das AE Register = FALSE ist. Ansonsten wird das Programm mit der nachfolgenden Anweisung fortgesetzt.

Beispiel in AWL:

```
LD 10
JMPCN NextStep (* AE = TRUE à Programm springt nicht *)
ADD 1
NextStep:
ST Value1
```


3.8 Typkonvertierung

3.8.1 BOOL_TO_BYTE

	SK 5xxP	SK 54xE	SK 53xE SK 52xE	On/On+	SK 2xxE	SK 2xxE-FDS		SK 155E-FDS SK 175E-FDS
Verfügbarkeit	Χ	Х	Х	Χ	Х	X	Х	X

	BOOL	BYTE	INT	DINT
Datentyp	Х			

Konvertiert den Datentyp AE von BOOL zu BYTE. Ist das AE gleich FALSE, dann wird der Akku auf 0 konvertiert. Ist das AE gleich TRUE, dann wird der Akku auf 1 konvertiert.

Beispiel in AWL:

```
LD TRUE
BOOL_TO_BYTE (* AE = 1 *)
```

Beispiel in ST:

```
Ergebnis := BOOL_TO_BYTE(TRUE); (* Ergebnis = 1 *)
```

3.8.2 BYTE_TO_BOOL

	SK 5xxP	SK 54xE	SK 53xE SK 52xE	On/On+	SK 2xxE	SK 2xxE-FDS		SK 155E-FDS SK 175E-FDS
Verfügbarkeit	Х	Х	Х	Х	Х	Х	Х	Х

	BOOL	BYTE	INT	DINT
Datentyp		Х		

Konvertiert den Datentyp von BYTE zu BOOL. Solange das BYTE ungleich Null ist, gibt es immer ein TRUE als Konvertierungsergebnis.

Beispiel in AWL:

```
LD 10
BYTE_TO_BOOL (* AE = TRUE *)
```

Beispiel in ST:

```
{\tt Ergebnis} \; := \; {\tt BYTE\_TO\_BOOL(10)}; \; \; (* \; {\tt Ergebnis} \; = \; {\tt TRUE} \; \; *)
```


3.8.3 BYTE_TO_INT

	SK 5xxP	SK 54xE	SK 53xE SK 52xE	On/On+	SK 2xxE	SK 2xxE-FDS		SK 155E-FDS SK 175E-FDS
Verfügbarkeit	Х	Х	Х	Χ	Х	Х	Х	Х

	BOOL	BYTE	INT	DINT
Datentyp		Χ		

Konvertiert den Datentyp von BYTE zu INT. Das BYTE wird in den Low Teil des INT hineinkopiert und der High Teil vom INT wird 0 gesetzt.

Beispiel in AWL:

```
LD 10
BYTE TO INT (* Akku = 10 *)
```

Beispiel in ST:

```
Ergebnis := BYTE_TO_INT(10); (* Ergebnis = 10 *)
```

3.8.4 DINT_TO_INT

	SK 5xxP	SK 54xE	SK 53xE SK 52xE	On/On+	SK 2xxE	SK 2xxE-FDS		SK 155E-FDS SK 175E-FDS
Verfügbarkeit	Х	Х	Х	Х	Х	X	Х	X

	BOOL	BYTE	INT	DINT
Datentyp				Х

Konvertiert den Datentyp von DINT zu INT. Dabei wird der High Teil vom DINT Wert nicht mit übernommen.

Beispiel in AWL:

```
LD 200000
DINT_TO_INT (* Akku = 3392 *)

LD DINT# -5000
DINT_TO_INT (* Akku = -5000 *)

LD DINT# -50010
DINT_TO_INT (* Akku = 15526 *)
```

Beispiel in ST:

```
Ergebnis := DINT_TO_INT(200000); (* Ergebnis = 3392 *)
Ergebnis := DINT_TO_INT(-5000); (* Ergebnis = -5000 *)
Ergebnis := DINT_TO_INT(-50010); (* Ergebnis = 15526 *)
```


3.8.5 INT_TO_BYTE

		SK 5xxP	SK 54xE	SK 53xE SK 52xE	On/On+	SK 2xxE	SK 2xxE-FDS	SK 180E SK 190E	SK 155E-FDS SK 175E-FDS
Verfüg	gbarkeit	Х	Х	Х	Χ	Х	X	Χ	X

	BOOL	BYTE	INT	DINT
Datentyp			X	

Konvertiert den Datentyp von INT zu BYTE. Dabei wird der High Teil vom INT Wert nicht mit übernommen. Vorzeichen gehen verloren, da der Typ BYTE vorzeichenlos ist.

Beispiel in AWL:

```
LD 16#5008
INT_TO_BYTE (* Akku = 8 *)
```

Beispiel in ST:

```
Ergebnis := INT_TO_BYTE(16\#5008); (* Ergebnis = 8 *)
```

3.8.6 **INT_TO_DINT**

	SK 5xxP	SK 54xE	SK 53xE SK 52xE	On/On+	SK 2xxE	SK 2xxE-FDS	SK 180E SK 190E	SK 155E-FDS SK 175E-FDS
Verfügbarkeit	Х	Х	Х	Х	Х	X	Х	X

	BOOL	BYTE	INT	DINT
Datentyp			Х	

Konvertiert den Datentyp von INT zu DINT. Das INT wird in den Low Teil des DINT hineinkopiert und der High Teil vom DINT wird 0 gesetzt.

Beispiel in AWL:

```
LD 10
INT_TO_DINT (* Akku = 10 *)
```

Beispiel in ST:

```
Ergebnis := INT_TO_DINT(10); (* Ergebnis = 10 *)
```


3.9 PLC Störmeldungen

Störmeldungen führen zum Abschalten des Gerätes, um einen Gerätedefekt zu verhindern. Bei PLC Störmeldungen wird die Abarbeitung der PLC gestoppt und die PLC geht in den Zustand "PLC-Error". Bei anderen Störmeldungen läuft die PLC weiter. Nach einer Quittierung des Fehlers startet die PLC wieder automatisch.

Beim PLC User Fault 23.X und 24.X läuft die PLC weiter!

Anzeige SimpleB		Störung Text in der ParameterBox	Ursache
Gruppe	Detail in P700[- 01]/ P701		Abhilfe
E022	22.0	Kein PLC-Programm	Die PLC wurde gestartet es befindet sich jedoch kein PLC- Programm im FU - PLC-Programm in das Gerät laden
	22.1	PLC-Programm ist fehlerhaft	Die Checksummen Prüfung über das PLC-Programm ergab einen Fehler Gerät neu starten (Power ON) und wieder versuchen - Alternative, PLC-Programm neu laden
	22.2	Falsche Sprungadresse	Programmfehler, Verhalten wie im Fehler 22.1
-	22.3	Stack Überlauf	Es wurden in der Laufzeit des Programm mehr als 6 Klammerebenen geöffnet - Programm auf Laufzeitfehler überprüfen
	22.4	Max. PLC-Zyklen überschritten	Die angegebene max. Zykluszeit des PLC-Programmes wurde überschritten - Zykluszeit anpassen oder Programm überprüfen
	22.5	Unbekannter Befehlscode	Ein im Programm vorhandener Befehlscode kann nicht ausgeführt werden, da er unbekannt ist - Programmfehler, Verhalten wie im Fehler 22.1 - Version der PLC und die Version von NORDCON passen nicht zusammen
	22.6	PLC-Schreibzugriff	Während eines laufenden PLC-Programmes wurde der Programminhalt verändert
	22.9	PLC-Sammelfehler	Die Fehlerursache kann nicht genau aufgelöst werden - Verhalten wie im Fehler 22.1
E023/ 23.0 bis 23.7		PLC User Fault 1 bis 8	Dieser Fehler kann durch das PLC-Programm ausgelöst werden, um Probleme im Ablauf des PLC-Programm nach
	24.0 bis 24.7	PLC User Fault 9 bis 16	außen zu signalisieren. Die Auslösung erfolgt über das Beschreiben der Prozessvariable "ErrorFlags".

4 Parameter

Die für die PLC-Funktionalität relevanten Geräteparameter sind ausführlich im Handbuch des betreffenden Frequenzumrichters bzw. Motorstarters beschrieben.

5 Anhang

5.1 Service- und Inbetriebnahmehinweise

Bei Problemen, z. B. während der Inbetriebnahme, nehmen Sie Kontakt mit unserem Service auf:

***** +49 4532 289-2125

Unser Service steht Ihnen rund um die Uhr (24 h/7 Tage) zur Verfügung und kann Ihnen am besten helfen, wenn Sie folgende Informationen vom Gerät und dessen Zubehör bereithalten:

- · Typenbezeichnung,
- Seriennummer,
- · Firmwareversion.

5.2 Dokumente und Software

Dokumente und Software können Sie von unserer Internetseite www.nord.com herunterladen.

Mitgeltende und weiterführende Dokumente

Dokumentation	Inhalt
BU 0155	Handbuch für Feldverteiler Motorstarter NORDAC LINK SK 180E / SK 190E
BU 0180	Handbuch für Frequenzumrichter NORDAC BASE SK 180E / SK 190E
BU 0200	Handbuch für Frequenzumrichter NORDAC FLEX SK 200E SK 235E
BU 0250	Handbuch für Feldverteiler Frequenzumrichter NORDAC LINK SK 250E-FDS
	SK 280E-FDS
BU 0500	Handbuch für Frequenzumrichter NORDAC PRO SK 500E SK 535E
BU 0505	Handbuch für Frequenzumrichter NORDAC PRO SK 540E SK 545E
BU 0600	Handbuch für Frequenzumrichter NORDAC PRO SK 500P SK 550P
BU 0800	Handbuch für Frequenzumrichter NORDAC ON/ON+ SK 300P
BU 0000	Handbuch zum Umgang mit der NORDCON-Software
BU 0040	Handbuch zum Umgang mit den NORD-Parametrierboxen

Software

Software	Beschreibung
NORDCON	Parametrier- und Diagnosesoftware

5.3 Abkürzungen

AE Aktuelles Ergebnis
 AIN Analogeingang
 AOUT Analogausgang

AWL Anwendungsliste (auch IL)
 COB-ID Communication Objekt Identifier

DI / DIN Digitaleingang
 DO / DOUT Digitalausgang
 E/A bzw. I/O Ein- / Ausgang

EEPROM Nicht flüchtiger Speicher

EMV Elektromagnetische Verträglichkeit

FB FunktionsblockFU FrequenzumrichterHSW Hauptsollwert

IL Instruction List (siehe auch AWL)
 ISD Feldstrom (Stromvektorregelung)

LED LeuchtdiodeMC Motion ControlNSW Nebensollwert

P Parametersatzabhängiger Parameter, d.h. ein Parameter, dem in jedem der 4

Parametersätze des Gerätes unterschiedliche Funktionen bzw. Werte zugewiesen

werden können.

P-BOX ParameterBox

PDO Prozess Daten Objekt

• PLC SPS (Speicher Programmierbare Steuerung)

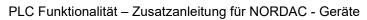
S Supervisor Parameter, d.h. Ein Parameter der nur sichtbar wird, wenn der korrekte

Supervisor Code in Parameter P003 eingetragen ist

SW Softwareversion (Siehe Parameter P707)

• STW Steuerwort

ZSW Zustandswort (Statuswort)


Stichwortverzeichnis

В	CTUD	63
Bestimmungsgemäße Verwendung9	Datentypen	142
D	Datentypen in ST	146
- Dokumente	Datenverarbeitung über Akku	14
mitgeltend158	Debugging	23
E	DINT_TO_INT	154
	DIV	94
Elektrofachkraft10	DIV(94
P	Editor	18
PLC11	Ein- und Ausgänge	116
ABS92	Eingabefenster	20
ACOS98	Einzelschritt	24
ADD93	Elektronisches Getriebe mit Fliege	•
ADD(93		
AND101	EQ	
AND(101	Erweiterte mathematische Operato	
ANDN102	Exit	
ANDN(102	EXP	
Anweisungsliste (AWL / IL)142	F_TRIG	65
Arithmetische Operatoren92	FB_ FunctionCurve	
ASIN98	FB_ PIDT1	87
ATAN98	FB_ ResetPostion	89
Aufruf von Funktionsblöcken in ST147	FB_Capture	81
Auswertung von Ausdrücken147	FB_DinCounter	84
Beobachtungspunkte23	FB_DINTToPBOX	76
Bit Operatoren101	FB_FlyingSaw	36
Bitweiser Zugriff auf Variablen145	FB_Gearing	38
BOOL_TO_BYTE153	FB_NMT	27
Bus Soll- und Istwerte128	FB_PDOConfig	28
BYTE_TO_BOOL153	FB_PDOReceive	31
BYTE_TO_INT154	FB_PDOSend	33
CANopen Kommunikation16	FB_ReadTrace	71
CASE149	FB_STRINGToPBOX	79
ControlBox15	FB_Weigh	90
ControlBox und ParameterBox133	FB_WriteTrace	73
COS98	Fehler	139
CTD61	FOR- Schleife	150
CTU62	Funktionsaufrufe	145

Funktionsblöcke26	Meldungsfenster	21
Funktionsumfang15	MIN	95
GE113	MOD	96
GT114	MOD(96
Haltepunkte23	Motion Control Lib	15
IF148	MUL	96
Infoparameter134	MUL(96
INT_TO_BYTE155	MUX	97
INT_TO_DINT155	NE	115
JMP152	NOT	103
JMPC152	Operatoren	92
JMPCN152	OR	104
Kommentare144	OR(104
Konfiguration25	ORN	105
Lade- und Speicheroperatoren111	ORN(105
Laden, Speichern & Drucken17	Parameter	140
LD111	ParameterBox	15
LDN111	Programm Task	14
LE114	Programm zum Gerät übertragen	22
LIMIT94	Prozessabbild	13
Literale142	Prozessregler	16
LN99	Prozesswerte	116
LOG100	R	107
LT115	R_TRIG	65
MAX95	REPEAT- Schleife	150
MC_ MoveAbsolute47	Return	148
MC_ WriteParameter_1660	ROL	106
MC_ WriteParameter_3260	ROR	106
MC_Control41	RS Flip Flop	66
MC_Control_MS43	S	107
MC_Home44	SHL	107
SK5xxP45	SHR	108
MC_MoveAdditive49	SIN	98
MC_MoveRelative50	Soll- und Istwerte	124
MC_MoveVelocity51	Sollwert Verarbeitung	14
MC_Power53	Speicher	13
MC_ReadActualPos55	Spezifikation	12
MC_ReadParameter56	Sprachen	142
MC_ReadStatus57	Sprünge	152
MC_Reset58	Sprungmarke	144
MC_Stop59	SQRT	100

SR Flip Flop67	Variablen und FB Deklaration19
ST112	Vergleichs Operatoren 113
Standard Funktionsblöcke61	Visualisierung15
STN112	Visualisierung ParameterBox75
Störmeldungen156	Watch- & Breakpoint Anzeigefenster 21
Strukturierter Text (ST)146	WHILE- Schleife151
SUB97	XOR109
SUB(97	XOR(109
TAN98	XORN110
TOF68	XORN(110
TON69	Zuweisungsoperator146
TP70	s
Typkonvertierung153	Sicherheitshinweise
Überblick Visualisierung75	Software158

NORD DRIVESYSTEMS Group

Headquarters and Technology Centre

in Bargteheide, close to Hamburg

Innovative drive solutions

for more than 100 branches of industry

Mechanical products

parallel shaft, helical gear, bevel gear and worm gear units

Electrical products

IE2/IE3/IE4 motors

Electronic products

centralised and decentralised frequency inverters, motor starters and field distribution systems

7 state-of-the-art production plants

for all drive components

Subsidiaries and sales partners in 98 countries on 5 continents

provide local stocks, assembly, production,

technical support and customer service

More than 4,000 employees throughout the world

create customer oriented solutions

www.nord.com/locator

Headquarters:

Getriebebau NORD GmbH & Co. KG

Getriebebau-Nord-Straße 1 22941 Bargteheide, Germany

T: +49 (0) 4532 / 289-0

F: +49 (0) 4532 / 289-22 53

info@nord.com, www.nord.com

Member of the NORD DRIVESYSTEMS Group

